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Resource Managers like YARN and Mesos have emerged as a critical layer in the cloud computing system
stack, but the developer abstractions for leasing cluster resources and instantiating application logic are very
low-level. This flexibility comes at a high cost in terms of developer effort, as each application must repeatedly
tackle the same challenges (e.g., fault-tolerance, task scheduling and coordination) and re-implement common
mechanisms (e.g., caching, bulk-data transfers). This paper presents REEF, a development framework that
provides a control-plane for scheduling and coordinating task-level (data-plane) work on cluster resources
obtained from a Resource Manager. REEF provides mechanisms that facilitate resource re-use for data caching,
and state management abstractions that greatly ease the development of elastic data processing pipelines
on cloud platforms that support a Resource Manager service. We illustrate the power of REEF by showing
applications built atop: a distributed shell application, a machine learning framework, a distributed in-memory
caching system, and a port of the CORFU system. REEF is currently an Apache top-level project that has
attracted contributors from several institutions and it is being used to develop several commercial offerings
such as the Azure Stream Analytics service.
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systems;
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We present a more detailed description of the REEF architecture and design. We add the high availability support of REEF
Driver and its evaluation. We also add two new REEF use cases: a distributed cache and a distributed machine learning
framework.
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1 INTRODUCTION
Apache Hadoop has become a key building block in the new generation of scale-out systems. Early
versions of analytic tools over Hadoop, such as Hive [51] and Pig [35] for SQL-like queries, were
implemented by translation into MapReduce computations. This approach has inherent limitations,
and the emergence of resource managers such as Apache YARN [53], Apache Mesos [19] and
Google Omega [39] have opened the door for newer analytic tools to bypass the MapReduce layer.
This trend is especially significant for iterative computations such as graph analytics and machine
learning, for which MapReduce is widely recognized to be a poor fit. In fact, the website of the
machine learning toolkit Apache Mahout [47] explicitly warns about the slow performance of some
of its algorithms on Hadoop MapReduce.
Resource Managers are a first step in re-factoring the early implementations of MapReduce

into a common scale-out computational fabric that can support a variety of analytic tools and
programming paradigms. These systems expose cluster resources—in the form of machine slices—to
higher-level applications. Exactly how those resources are exposed depends on the chosen Resource
Manager. Nevertheless, in all cases, higher-level applications define a single application master that
elastically acquires resources and executes computations on them. Resource Managers provide
facilities for staging and bootstrapping these computations, as well as coarse-grained process
monitoring. However, runtime management—such as computational status and progress, and
dynamic parameters—is left to the application programmer to implement.

This paper presents Apache REEF (Retainable Evaluator Execution Framework), which provides
runtime management support for computational task monitoring and restart, data movement and
communications, and distributed state management. REEF is devoid of a specific programming
model (e.g., MapReduce), and instead provides an application framework on which new analytic
toolkits can be rapidly developed and executed in a resource managed cluster. The toolkit author
encodes their logic in a Driver—the centralized work scheduler—and a set of Task computations that
perform the work. The core of REEF facilitates the acquisition of resources in the form of Evaluator
runtimes, the execution of Task instances on Evaluators, and the communication between the
Driver and its Tasks. However, additional power of REEF resides in its ability to facilitate the
development of reusable data management services that greatly ease the burden of authoring the
Driver and Task components in a large-scale data processing application.
REEF is, to the best of our knowledge, the first framework that provides a re-usable control-

plane that enables systematic reuse of resources and retention of state across tasks, possibly from
different types of computations, by filling the gap between resource managers and applications.
This common optimization yields significant performance improvements by reducing I/O, and
enables resource and state sharing across different frameworks or computation stages. Important
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use cases include pipelining data between different operators in a relational dataflow and retaining
state across iterations in iterative or recursive distributed programs. REEF is an (open source)
Apache top-level project with many contributions of artifacts that greatly reduce the development
effort in building analytical toolkits on Resource Managers.

The remainder of this paper is organized as follows. Section 2 provides background on Resource
Manager architectures. Section 3 gives a general overview of the REEF abstractions and key design
decisions. Section 4 describes some of the applications developed using REEF, one being the Azure
Stream Analytics Service offered commercially in the Azure Cloud. Section 5 analyzes REEF’s
runtime performance and showcases its benefits for advanced applications. Section 6 investigates
the relationship of REEF with related systems, and Section 7 concludes the paper with future
directions.

2 RISE OF THE RESOURCE MANAGERS
The first generation of Hadoop systems divided each machine in a cluster into a fixed number
of slots for hosting map and reduce tasks. Higher-level abstractions such as SQL queries or ML
algorithms are handled by translating them into MapReduce programs. Two main problems arise in
this design. First, Hadoop clusters often exhibit extremely poor utilization (on the order of 5 − 10%
CPU utilization at Yahoo! [21]) due to resource allocations being too coarse-grained.1 Second, the
MapReduce programming model is not an ideal fit for certain applications. A common workaround
on Hadoop clusters is to schedule a “map-only” job that internally instantiates a distributed program
for running the desired algorithm (e.g., machine learning, graph-based analytics) [1, 2, 45].
These issues motivated the design of a second generation Hadoop system, which included an

explicit resource management layer called YARN [53].2 Additional examples of resource managers
include Google Omega [39], Apache Mesos [19], and Kubernetes [5]. While structurally different,
the common goal is to directly lease cluster resources to higher-level computations, or jobs. REEF
is designed to be agnostic to the particular choice of resource manager, while providing support for
obtaining resources and orchestrating them on behalf of a higher-level computation. In this sense,
REEF provides a logical/physical separation between applications and the resource management
layer. For the sake of exposition, we focus on obtaining resources from YARN in this paper. Com-
paring the merits of different resource management layers is out of scope for this paper, because
REEF is primarily relevant to what happens with allocated resource, and not how resources are
requested.
Figure 1 shows a high-level view of the YARN architecture, and Figure 2 contains a table of

components that we describe here. A typical YARN setup would include a single Resource Manager
(RM) and several Node Manager (NM) installations; each NM typically manages the resources of a
single machine, and periodically reports to the RM, which collects all NM reports and formulates a
global view of the cluster resources. The periodic NM reports also provide a basis for monitoring
the overall cluster health via the RM, which notifies relevant applications when failures occur.
A YARN application is represented by an Application Master (AM), which is responsible for

orchestrating the job’s work on allocated containers i.e., a slice of machine resources (some amount
of CPU, RAM, disk, etc.). A client submits an AM package—that includes a shell command and
any files (i.e., binary executables, configurations) needed to execute the command—to the RM,
which then selects a single NM to host the AM. The chosen NM creates a shell environment that
includes the file resources, and then executes the given shell command. The NM monitors the AM
for resource usage and exit status, which the NM includes in its periodic reports to the RM. At

1HadoopMapReduce tasks are often either CPU or I/O bound, and slots represent a fixed ratio of CPU and memory resources.
2YARN: Yet Another Resource Negotiator
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(d) If supported by the application, tasks running on
containers report status to the AM.

Fig. 1. Illustration of an application running on YARN

Component (abbr.) Description

Resource Manager (RM) A service that leases cluster resources to applications.
Node Manager (NM) Manages the resources of a single compute entity (e.g.,

machine). Reports the status of managed machine re-
sources to the RM

Application Master (AM) Handles the application control flow and resource nego-
tiation with the RM.

Container A single unit of resource allocation, e.g., some amount of
CPU/RAM/Disk.

Fig. 2. Glossary of components (and abbreviations) described in this section, and used throughout the paper.

runtime, the AM uses an RPC interface to request containers from the RM and ask the NMs that
host its containers to launch a desired program. Returning to Figure 1, we see an AM instances
running with two allocated containers, each of which executes a job-specific task.
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2.1 Example: Distributed Shell on YARN
To further set the stage, we briefly explain how to write a distributed shell application directly
on YARN i.e., without REEF. The YARN source code distribution contains a simple example im-
plementation of a distributed shell (DS) application. Within that example is code for submitting
an AM package to the RM, which proceeds to launch a distributed shell AM. After starting, the
AM establishes a periodic heartbeat channel with the RM using a YARN provided client library.
The AM uses this channel to submit requests for containers in the form of resource specifications:
such as container count and location (rack/machine address), and hardware requirements (amount
of memory/disk/CPU). For each allocated container, the AM sets up a launch context containing
relevant files required by the executable (e.g., shell script), the environment to be setup for the
executable, and a command-line to execute. The AM then submits this information to the NM
hosting the container using a YARN provided client library. The AM can obtain the process-level
status of its containers from the RM or more directly with the host NM, again using a YARN
provided client library. Once the job completes (i.e., all containers complete/exit), the AM sends a
completion message to the RM, and exits itself.
The YARN distribution includes this distributed shell program (around 1300 lines of code) as

an exercise for interacting with its protocols. A more complete distributed shell application might
include the following features:
• Providing the result of the shell command to the client.
• More detailed error information at the AM and client.
• Reports of execution progress at the AM and client.

Supporting this minimal feature set requires a runtime at each NM that executes the given shell
command, monitors the progress, and sends the result (output or error) to the AM, which aggregates
all results and sends the final output to the client. In Section 4.1 we will describe a more feature
complete version of this example developed on REEF in less than half (530) the lines of code. The
key contributor to this lines of code reduction happens by capturing the control-flow code, common
to Resource Manager applications, in the REEF framework.

3 REEF ARCHITECTURE
Resource managed applications leverage leased resources to execute massively distributed compu-
tations; here, we focus on data analytics jobs that instantiate compute tasks, which process data
partitions in parallel. We surveyed the literature [7, 10, 15, 20, 60, 61] for common mechanisms and
design patterns, leading to the following common components within these architectures.
• A centralized per-job scheduler that observes the runtime state and assigns tasks to resources,
e.g., MapReduce task slots [15].
• A runtime for executing compute tasks and retaining state in an organized fashion i.e.,
contexts that group related object state.
• Communication channels for monitoring status and sending control messages.
• Configuration management for passing parameters and binding application interfaces to
runtime implementations.

Apache REEF captures these features in a framework that allows application-level logic to focus on
appropriate implementations of higher-level semantics, such as deciding which resources should be
requested, what state should be retained within each resource, and what task-level computations
should be scheduled on resources. The REEF framework provides the following key abstractions to
developers.
• Driver: application code that implements the resource allocation and Task scheduling logic.
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ContextContextContext Resource Manager

AppTask	{

		byte[]	run()	{
				…
				//	The	returned	result	
				//	is	sent	to	the	Driver
				return	result.toBytes();	
		}

}

AppDriver	{

		//	Called	when	DriverRuntime	starts
		void	onStarted()	{
				//	evalConfig:	nCores,	Services,	….
				allocateEvaluator(evalConfig);
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		//	Called	when	an	Evaluator	is	allocated
		void	onAllocated(Evaluator	e)	{
				//	taskConfig:	code	to	run,	...
				e.submitTask(taskConfig)
				…
		}
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}
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Fig. 3. An instance of REEF in terms of its application framework (Driver and Task) and runtime infrastructure
components (Evaluator, Driver Runtime, Environment Adapter).

• Task: the work to be executed in an Evaluator.
• Evaluator: a runtime environment on a container that can retain state within Contexts and
execute Tasks (one at a time).
• Context: a state management environment within an Evaluator, that is accessible to any Task

hosted on that Evaluator.
Figure 3 further describes REEF in terms of its runtime infrastructure and application framework.

The figure shows an application Driver with a set of allocated Evaluators, some of which are
executing application Task instances. The Driver Runtimemanages events that inform the Driver of
the current runtime state. Each Evaluator is equipped with a Context for capturing application state
(that can live across Task executions) and Services that provide library solutions to general problems,
e.g., state checkpointing, group communication among a set of participating Task instances. An
Environment Adapter is a shim layer that insulates the REEF runtime from the underlying Resource
Manager layer. Lastly, REEF provides messaging channels between the Driver and Task instances—
supported by a highly optimized event management toolkit (Section 3.4.1)—for communicating
runtime status and state, and a configurationmanagement tool (Section 3.4.2) for binding application
logic and runtime parameters. The remainder of this section provides further details on the runtime
infrastructure components (Section 3.1) and on the application framework (Section 3.2).

3.1 Runtime Infrastructure
The Driver Runtime hosts the application control-flow logic implemented in the Driver module,
which is based on a set of asynchronous event-handlers that react to runtime events, e.g., resource
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allocations, task executions and failures. The Evaluator executes application tasks implemented
in the Task module, and manages application state in the form of Contexts. The Environment

Adapter deals with the specifics of the utilized resource management service. Lastly, Services add
extensibility to the REEF framework by allowing newmechanisms to be developed and incorporated
into an application’s logic. This section further describes these runtime infrastructure components.

3.1.1 Evaluators. REEF retains resource containers across tasks to avoid resource allocation
and scheduling costs. An Evaluator is the abstraction to capture retainable containers and is the
runtime for Tasks. There is a 1:1 mapping between Evaluators and underlying resource containers.
An Evaluator runs one Task at a time but it may run many Tasks throughout its lifetime.

3.1.2 Contexts. Retaining state across task executions is central to the REEF design, and critical
to supporting iterative dataflows that cache loop invariant data or to facilitate delta-based com-
putations (e.g., Naiad [32] and BigDatalog [41]). Moreover, the need to clean up state from prior
task executions prompted the design of stackable contexts in the Evaluator runtime. Contexts add
structure to Evaluator state, and provide the Driver with control over what state gets passed from
one task to the next, potentially crossing a computational stage boundary. For example, assume we
have a hash-join operator that consists of a build stage, followed by a probe stage. The tasks of the
build stage construct a hash-table on the join column(s) of dataset A, storing it in the root context
that will be shared with the tasks of the probe stage, which performs the join with dataset B by
looking up matching A tuples in the hash-table. Let us further assume that the build stage tasks
require some scratch space, placed in a (child) scratch context. When the build stage completes,
the scratch context is discarded, leaving the root context and the hash-table state for the probe
stage tasks. Contexts add such fine-grained (task-level) mutable state management, which could be
leveraged for building a DAG scheduler (like Dryad [20], Tez [38], Hyracks [10]), where vertices
(computational stages) are given a “localized” context for scratch space, using the “root” context
for passing state.

3.1.3 Services. The central design principle of REEF is in factoring out core functionalities that
can be re-used across a broad range of applications. To this end, we allow users to deploy services
as part of the Context definition. This facilitates the deployment of distributed functionalities that
can be referenced by the application’s Driver and Tasks, which in turn eases the development
burden of these modules. For example, we provide a name-based communication service that allows
developers to be agnostic about re-establishing communication with a Task that was re-spawned
on a separate Evaluator.

3.1.4 Environment Adapter. REEF factors out many of the resource manager specific details into
an Environment Adapter layer (Figure 4), making the code base easy to port to different resource
managers. The primary role of the Environment Adapter is to translate Driver actions (e.g., requests
for Evaluators) to the underlying resource manager protocol. We have implemented three such
adapters:
• Local Processes: REEF has its own runtime that leverages the host operating system to
provide process isolation between the Driver and Evaluators. The runtime limits the number
of processes active on a single node at a given time and the resources dedicated to a given
process. This environment is useful for debugging applications and examining the resource
management aspects of a given application or service on a single node.
• Apache YARN: This adapter executes the Driver Runtime as a YARNApplicationMaster [53].
Resource requests are translated into the appropriate YARN protocol, and YARN containers
are used to host Evaluators. The adapter translates Driver resource requests into requests
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(a)Without REEF, developers should write boiler-plate
code multiple times in order to run their applications
on different resource managers.

REEF
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Local 
Adapter
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Adapter
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…
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(b) REEF’s environment adapters allow developers to
run their applications on different resource managers
with simple configuration changes.

Fig. 4. Integration of applications to various resource managers without and with REEF.

for YARN containers. When notified of successfully allocated containers, the adapter exposes
them to the Driver as allocation events. In response to a Context or Task launch request
from the Driver, the adapter configures and launches an Evaluator on the appropriate YARN
container. Further, the adapter manages the status reports of all running YARN containers and
notifies the Driver of respective Evaluator status reports through events such as allocation,
failure and completion.
• Apache Mesos: This adapter executes the Driver Runtime as a “framework” in Apache
Mesos [19]. Resource requests are translated into the appropriate Mesos protocol, and Mesos
executors are used to host Evaluators. The adapter locally starts a new process to host
the Driver Runtime, passing user-configured parameters including the IP address of the
Mesos Master. Once the Driver Runtime has been bootstrapped, the adapter registers itself
as a Mesos Framework to start receiving resource offers. The adapter uses Driver resource
requests to obtain resources during Mesos offer exchanges, which are allocated in the form of
Mesos Executors (i.e., the equivalent of YARN containers). When the Mesos Master notifies
it of successfully launched Mesos Executors, the adapter exposes them to the Driver as
allocation events. The Driver can proceed to launch a Context or Task, which the adapter
uses to configure and launch Evaluator instances that run on Mesos Executors. As in YARN,
the adapter receives status reports of all running Mesos Executors and notifies the Driver of
respective Evaluator status reports e.g., failure and completion.

Creating an Environment Adapter involves implementing a couple of interfaces. In practice,
most Environment Adapters require additional configuration parameters from the application
(e.g., credentials). Furthermore, Environment Adapters expose the underlying Resource Manager
interfaces, which differ in the way that resources are requested and monitored. REEF provides a
generic abstraction to these low-level interfaces, but also allows applications to bind directly to
them for allocating resources and dealing with other subtle nuances, e.g., resource preemption.

3.2 Application Framework
We now describe the framework used to capture application logic i.e., the code written by the
application developer. Figure 5 presents a high-level control-flow diagram of a REEF application.
The control channels are labeled with a number. We will refer to this figure in our discussion
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Fig. 5. High-level REEF control-flow diagrams—running within an example YARN environment—that capture
an application with two Evaluator instances, each of which is running a Task.

by referencing the control-flow channel number. For instance, the client (top left) initiates a job
by submitting an Application Master to the Resource Manager (control-flow 1). In REEF, an
Application Master is configured through a Tang specification (Section 3.4.2), which requires
bindings for the Driver implementation. When the Resource Manager launches the Application

Master (control-flow 2), the REEF Driver Runtime will start and use the Tang specification to
instantiate the Driver components. The Driver can optionally be given a channel to the client
(control-flow 7) for communicating status and receiving commands via an interactive application.
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3.2.1 Driver. The Driver implements event-handlers that define the resource acquisition policies
and (task-level) work scheduling of the application. For instance, a Driver that schedules a DAG of
data-processing elements—common to many data-parallel runtimes [7, 10, 20, 46, 60, 61]—would
launch (per-partition) tasks that execute the work of individual processing elements in the order of
data dependencies. However, unlike most data-parallel runtimes3, resources for executing such tasks
must first be allocated from the Resource Manager. This added dimension increases the scheduler
complexity, which motivated the design of the REEF Driver to adopt an Reactive Extensions
(Rx) [31] API4 that consists of asynchronous handlers that react to events triggered by the runtime.
We categorize the events that a Driver reacts to along the following three dimensions:

(1) Runtime Events:When the Driver Runtime starts, a start event passed to the Driver, which
it must react to by either requesting resources (control-flow 3)—using a REEF provided
request module that mimics the underlying resource management protocol—or by setting an
alarm with a callback method and future time. Failure to do one of these two steps will result
in the automatic shutdown of the Driver. In general, an automatic shutdown will occur when,
at any point in time, the Driver does not have any resource allocations, nor any outstanding
resource requests or alarms. Lastly, the Drivermay optionally listen for the stop event, which
occurs when the Driver Runtime initiates its shutdown procedure.

(2) Evaluator Events: The Driver receives events for Evaluator allocation, launch, shutdown
and failure. An allocation event occurs when the resource manager has granted a resource
to the Driver. The Evaluator allocation event API contains methods for configuring the
initial Context state (e.g., files, services, object state, etc.), launching the Evaluator on the
assigned resource (via control-flow 4) and releasing it (de-allocate) back to the Resource
Manager, triggering a shutdown event. Furthermore, Evaluator allocation events contain
resource descriptions that provide the Driver with information needed to constrain state and
assign tasks, e.g., based on data locality. A launch event is triggered when confirmation of the
Evaluator bootstrap is received at the Driver. The launch event includes a reference to the
initial Context, which can be used to add further sub-Context state (described in Section 3.1.2)
and launch a sequence of Task executions (via control-flow 5). A failure of the Evaluator is
assumed not to be recoverable (e.g., due to misconfiguration or hardware faults), thus the
relevant resource is automatically deallocated. A failure event containing the exception state
is passed to the Driver. On the other hand, Task events are assumed to be recoverable, and
do not result in an Evaluator deallocation, allowing the Driver to recover from the issue;
for example, an out-of-memory exception might prompt the Driver to configure the Task

differently e.g., with a smaller buffer.
(3) Task Events:All Evaluators periodically send status updates including information about its

Context state, running Services and the current Task execution status, to the Driver Runtime
(control flow 6). The Task execution status is surfaced to the Driver in the form of four
distinct events: launch, message, failed, and completion. The launch event API contains
methods for terminating or suspending the Task execution, and a method for sending opaque
byte array messages to the running Task (via control-flow 6). Messages sent by the Driver

are immediately pushed to the relevant Task to minimize latency. Task implementations are
also able to send messages (opaque byte arrays) back to the Driver, which are piggy-backed
on the Evaluator status updates. Furthermore, when a Task completes, the Driver is passed
a completion event that includes a byte array “return value” of the Task main method. We
further note that REEF can be configured to limit the size of these messages in order to

3Today, exceptions include Tez [38] and Spark [60].
4Supported by Wake, which we describe in Section 3.4.1.
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avoid memory pressure. Lastly, Task failures result in an event that contains the exception
information, but do not result in the deallocation of the Evaluator hosting the failed Task.

3.2.2 Task. A Task is a piece of application code that contains a main method to be invoked
by the Evaluator. The application-supplied Task implementation has access to its configuration
parameters and the Evaluator state, which is exposed as Contexts. The Task also has access to any
services that the Drivermay have started on the given Evaluator; for example, a Task could deposit
its intermediate data in a buffer manager service so that it can be processed by a subsequent Task
running on the same Evaluator.

A Task ends when its main method returns with an optional return value, which REEF presents
to the Driver. The Evaluator catches any exceptions thrown by the Task and includes the exception
state in the failure event passed to the Driver. A Task can optionally implement a handle for
receiving messages sent by the Driver. These message channels can be used to instruct the Task to
suspend or terminate its execution in a graceful way. For instance, a suspended Task could return
its checkpoint state that can be used to resume it on another Evaluator. To minimize latency, all
messages asynchronously sent by the Driver are immediately scheduled to be delivered to the
appropriate Task. REEF does not wait for the next Evaluator “heartbeat” interval to transfer and
deliver messages.

3.3 Driver High Availability
REEF handles Evaluator and Task failures by incorporating recovery logic at Driver. However, to
make the entire application highly available, we also need to handle Driver failure events, which
has not been tackled in other systems. To support long-running applications, REEF provides Driver
high availability (HA) such that the crash of the Driver process does not fail the entire application.

We currently support DriverHA only on the REEF YARN runtime by taking advantage of YARN’s
Resource Manager High Availability (RMHA) feature.5 When RMHA is enabled, applications can
preserve containers across application retries such that the failure of a YARN AM only results in a
resubmission of an AM by the RM. An AM crash does not destroy the containers associated with
the AM right away and the outstanding containers are preserved for a certain duration. However,
YARN does not re-associate the containers with the newly submitted AM. With REEF Driver HA,
the Evaluators running on the containers call back to the new AM hosting Driver, thus Driver
is able to re-associate the Evaluators. REEF’s Driver HA feature allows application developers to
focus on their core application logic by dealing with these low-level details.

3.3.1 Driver-side Design. The Driver keeps track of the Evaluator recovery process via a finite
state machine. The recovery process always begins in the NOT_RESTARTED state. The Driver

starts the recovery process by determining whether it is a resubmitted instance through information
provided by the runtime environment. In YARN, we check resubmission by parsing the container
ID of the AM container in which the Driver is running. If the Driver is a resubmitted instance, the
process enters the RESTART_BEGAN state. Previous Evaluators and their statuses are then queried
from the RM. The application is notified if any Evaluator has failed during the restart process, and
the process enters the RESTART_IN_PROGRESS state as the Driver waits for evaluators to report
back.

In anticipation of Evaluators reporting back, the Driver also keeps soft-state for all its expected
Evaluators. An expected Evaluator starts out in the EXPECTED state, When the Driver receives

5 Note that Driver HA can only be supported if the underlying resource manager supports preservation of containers on a
Driver failure and allows a new instance of the Driver to be associated with the containers requested by the previous
Driver.
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a recovery heartbeat from the said Evaluator, the Evaluator moves to the REPORTED state. The
Evaluator is subsequently added to the set of managed Evaluators in the Driver, and moves to
the REREGISTERED state. The handlers for Evaluator context and task, are then invoked, and the
Evaluator finally moves to the PROCESSED state. The Driver only transitions its state to the final
RESTART_COMPLETED state if it expects no more Evaluators to report back or if a configurable
recovery timeout has passed. Once the recovery timeout has been reached, all Evaluators that
are still in the EXPECTED state are marked as EXPIRED, and will be ignored and shut down if
they report back to the Driver afterwards. The reports of such expired Evaluators are entirely
transparent to the application.

In order for the Driver to inform the client of which Evaluator failed on restart, it would need to
keep external state on the Evaluators. The Driver performs this bookkeeping by recording the ID
of the Evaluator allocated by the RM to the Driver. The Driver removes the Evaluator ID when an
evaluator is released. The current implementation utilizes the cluster distributed file system (DFS)
to perform Evaluator ID tracking.

3.3.2 Evaluator-side Design. Evaluators periodically send heartbeats back to the Driver. In the
event of a Driver failure, such heartbeats will fail. After passing a threshold of heartbeat failures, the
Evaluatorwill enter a recoverymode where it assumes that the Driver has failed. Under the recovery
mode, the Evaluator will try to perform an HTTP call routed by the YARN RM to a well-known
endpoint set up by its associated Driver. This endpoint would provide the remote identification
of the running Driver instance. In the YARN runtime, this endpoint can be derived from the RM
host port and the application ID of the YARN application. Once the Driver has successfully been
restarted, the endpoint will become available, and the Evaluators will be able to recover the remote
identification of the new Driver instance and reestablish its heartbeats. As an alternative to the
Driver setting up a special endpoint for HA, we are also looking into utilizing the YARN Service
Registry to recover the remote identification of the Driver.

3.4 Low-level Building Blocks
In building REEF, we factored out two low-level building blocks: event handling and configuration
management. These blocks simplified us to develop key REEF abstractions.

3.4.1 Event Handling. We built an asynchronous event processing framework called Wake,
which is based on ideas from SEDA [57], Rx [31] and the Click modular router [23]. As we will
describe in Section 3.2.1, the Driver interface is comprised of handlers that contain application code
which reacts to events. Wake allows the Driver Runtime to trade-off between cooperative thread
sharing that synchronously invokes these event handlers in the same thread, and asynchronous
stages, where events are queued for execution inside of an independent thread pool. Using Wake,
the Driver Runtime has been designed to prevent blocking from long-running network requests
and application code. In addition to handling local event processing, Wake also provides remote
messaging facilities built on top of Netty [50]. We use this for a variety of purposes, including full-
duplex control-plane messaging and a range of scalable data movement and group communication
primitives. The latter are used every day to process millions of events in the Azure Streaming
Service (see Section 4.5). Lastly, we needed to guarantee message delivery to a logical Task that
could physically execute on different Evaluators, e.g., due to a prior failure. Wake provides the
needed level of indirection by addressing Tasks with a logical identifier, which applications bind to
when communicating among Tasks.

3.4.2 Configuration Management. Configuring distributed applications is well-known to be
a difficult and error prone task [36, 56]. In REEF, configuration is handled through dependency
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injection, which is a software design pattern that binds dependencies (e.g., interfaces, parameter
values, etc.) to dependent objects (e.g., class implementations, instance variables, constructor ar-
guments, etc.). Google’s Guice [17] is an example of a dependency injection toolkit that we used
in an early version of REEF. The Guice API is based on binding patterns that link dependencies
(e.g., application Driver implementations) to dependents (e.g., the REEF Driver interface), and code
annotations that identify injection targets (e.g., which class constructors to use for parameter injec-
tion). The dependency injection design pattern has a number of advantages: client implementation
independence, reduction of boilerplate code, and more modular code that is easier to unit test.
However, it alone did not solve the problem of mis-configurations, which often occurred when
instantiating application Driver, Context, or Task implementations on remote container resources
that are very difficult to debug.

This motivated us to develop our own dependency injection system called Tang, which restricts
dynamic bind patterns.6 This restriction allows Tang configurations to be strongly typed and easily
verified for correctness through static analysis of bindings. Prior to instantiating client modules
on remote resources, Tang will catch mis-configuration issues early and provide more guidance
into the problem source. More specifically, a Tang specification consists of binding patterns that
resolve REEF dependencies (e.g., the interfaces of a Driver and Task) to client implementations.
These binding patterns are expressed using the host language (e.g., Java, C#) type system and
annotations, allowing unmodified IDEs such as Eclipse or Visual Studio to provide configuration
information in tooltips, auto-completion of configuration parameters, and to detect a wide range
of configuration problems (e.g., type checking, missing parameters). Since such functionality is
expressed in the host language, there is no need to install additional development software to get
started with Tang. The Tang configuration language semantics were inspired by recent work in
the distributed systems community on CRDTs (Commutative Replicated Data Types) [40] and the
CALM (Consistency As Logical Monotonicity) conjecture [3]. Due to space issues, we refer the
reader to the online documentation for further details (see http://reef.apache.org/tang.html).

3.5 Implementation
REEF’s design supports applications in multiple languages; it currently supports Java and C#. Both
share the core Driver Runtime Java implementation via a native (C++) bridge, therefore sharing
advancements of this crucial runtime component. The bridge forwards events between Java and
C# application Driver implementations. The Evaluator is implemented once per language to avoid
any overhead in the performance-critical data path.
Applications are free to mix and match Driver side event handlers in Java and C# with any

number of Java and C# Evaluators. To establish communications between Java and C# processes,
Wake is implemented in both languages. Tang is also implemented in both languages, and supports
configuration validation across the boundary; it can serialize the configuration data and dependency
graph into a neutral form, which is understood by Tang in both environments. This is crucial for
the early error detection in a cross-language applications. For instance, a Java Driver receives a
Java exception when trying to submit an ill-configured C# Task before attempting to launch the
Task on a remote Evaluator.

To the best of our knowledge, REEF is the only distributed control flow framework that provides
this deep integration across such language boundaries. Figure 6 gives an overview of the effort
involved in the development of REEF, including its cross-language support.7

6Injection of dependencies via runtime code, or what Guice calls “provider methods.”
7We computed lines of code on Apache REEF release 0.15.0.
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C# Java C++ Total
Tang 17,740 12,770 0 30,510
Wake 6,125 8,248 0 14,373
REEF 26,326 38,976 3041 68,343

Services 16,428 20,961 0 37,389
Total 66,619 80,955 3,041 150,615

Fig. 6. Lines of code by component and language

3.6 Discussion
REEF is an active open-source project that started in late 2012. Over the past several years, we have
refined our design based on feedback from many communities. The initial prototype of REEF’s
application interface were based on the Java Concurrency Library. When the Drivermade a request
for containers, it was given a list of objects representing allocated evaluators wrapped in Java
Futures. This design required us to support a pull-based API, whereby the client could request
the underlying object, even though the container for that object was not yet allocated, turning it
into blocking method call. Extending the Future interface to include callbacks somewhat mitigated
this issue. Nevertheless, writing distributed applications, like a MapReduce runtime, against this
pull-based API was brittle; especially in the case of error handling. For example, exceptions thrown
in arbitrary code interrupted the control-flow in a manner that was not always obvious as opposed
to being pushed to a specific (e.g., Task) error event-handler that has more context. As a result,
we rewrote the REEF interfaces around an asynchronous event processing (push-based) model
implemented by Wake. This greatly simplified both the REEF runtime and application-level code.
For example, under the current event processing model, we have less of a need for maintaining
bookkeeping state (e.g., lists of Future objects representing outstanding resource requests). Wake
also simplified performance tuning by allowing us to dedicate Wake thread pools to heavily loaded
event handlers without changes to the underlying application handler code.

4 APPLICATIONS
This section describes several applications built on Apache REEF, ranging from basic applications
to production level services. We start with an interactive distributed shell to further illustrate the
life-cycle of a REEF application. Next, we highlight the benefits of developing on REEF with a novel
class of machine learning research enabled by the REEF abstractions. We then conclude with a
description of three real-world applications that leverage REEF to deploy on YARN, emphasizing
the ease of development on REEF. The first is a Java version of CORFU [6], a distributed log service.
The second is Surf, a distributed in-memory caching service. The third is Azure Streaming Analytics,
a publicly available service deployed on the Azure Cloud Platform.

4.1 Distributed Shell
We illustrate the life-cycle of a REEF application with a simple interactive distributed shell, modeled
after the YARN example described in Section 2.1. Figure 7 depicts an execution of this application
on two Evaluators that execute Tasks running a desired shell command. During the course of
this execution, the Evaluators enter different states. The lines in the figure represent control flow
interactions.
The application starts at the Client, which submits the Distributed Shell Driver (DSD) to the

Resource Manager (RM) for execution. The RM then launches the Driver Runtime as an Application
Master. The Driver Runtime bootstrap process establishes a bidirectional communication channel
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(d) If the Client submits another command, new Tasks
are submitted to the existing Evaluators with their
state accessible via Contexts.

Fig. 7. A REEF Client executing the distributed shell job on two Evaluators A and B. The Evaluators
execute shell commands—submitted by the Client—in Task 1 and Task 2.

with the Client and sends a start event to the DSD, which requests two containers (on two separate
machines) with the RM. The RM will eventually send container allocation notifications to the
Driver Runtime, which sends allocation events to the DSD. The DSD uses those events to submit a
root Context—defining the initial state on each Evaluator—to the Driver Runtime, which uses the
root Context configuration to launch the Evaluators in containers started by the Node Managers.
The Evaluator bootstrap process establishes a bidirectional connection to the Driver Runtime.

The Evaluator informs the Driver Runtime that it has started and that the root Context is active.
The Driver Runtime then sends two active context events to the DSD, which relays this information
to the Client. The Client is then prompted for a shell command. An entered command is sent
and eventually received by the DSD in the form of a client message event. The DSD uses the
shell command in that message to configure Task 1, which is submitted to the Driver Runtime

for execution on both Evaluators. The Driver Runtime forwards the Task 1 configuration to the
Evaluators, which execute an instance of Task 1 (Figure 7b). Note that Task 1 may change the
state in the root Context. When Task 1 completes, the Evaluator informs the Driver Runtime. The
DSD is then passed a completed task event containing the shell command output, which is sent
to the client. After receiving the output of Task 1 on both Evaluators, the Client is prompted for
another shell command, which would be executed in a similar manner by Task 2 (Figure 7d).
Compared to the YARN distributed shell example described in Section 2.1, our implementation

provides cross-language support (we implemented it in Java and C#), is runnable in all runtimes
that REEF supports, and presents the client with an interactive terminal that submits subsequent
commands to retained Evaluators, avoiding the latency of spawning new containers. Further, the
REEF distributed shell exposes a RESTful API for Evaluator management and Task submission
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implemented using a REEF HTTP Service, which takes care of tedious issues like finding an
available port and registering it with the Resource Manager for discovery. Even though the core
distributed shell example on REEF is much more feature rich, it comes in at less than half the code
(530 lines) compared to the YARN version (1330 lines) thanks to REEF’s reusable control plane.

4.2 Distributed Machine Learning
Many state-of-the-art approaches to distributed machine learning target abstractions like Hadoop
MapReduce [13, 47]. Part of the attraction of this approach is the transparent handling of failures
and other elasticity events. This effectively shields the algorithm developers from the inherently
chaotic nature of a distributed system. However, it became apparent that many of the policy
choices and abstractions offered by Hadoop are not a great fit for the iterative nature of machine
learning algorithms [1, 55, 58]. This lead to proposals of new distributed computing abstractions
specifically for machine learning [9, 27–29, 60]. Yet, policies for resource allocation, bootstrapping,
and fault-handling remain abstracted through a high-level domain specific language (DSL) [9, 60]
or programming model [27–29].

In contrast, REEF offers a lower-level programming abstraction that can be used to take advan-
tage of algorithmic optimizations. This added flexibility sparked a line of ongoing research that
integrates the handling of failures, resource starvation and other elasticity challenges directly into
the machine learning algorithm. We have found a broad range of algorithms can benefit from this
approach, including linear models [33], principal component analysis [25] and Bayesian matrix fac-
torization [8]. Here, we highlight the advantages that a lower-level abstraction like REEF offers for
learning linear models, which are part of a bigger class of Statistical Query Model algorithms [22].

4.2.1 Linear Models. The input to our learning method is a dataset D of examples (xi ,yi ) where
xi ∈ R

d denotes the features and yi ∈ R denotes the label of example i . The goal is to find a linear
function fw (x j ) =

〈
x j ,w
〉
withw ∈ Rd that predicts the label for a previously unseen example. The

problem can be cast as an optimization problem of a loss function l ( f ,y). This function is typically
convex and differentiable in f , thus the optimization problem is convex and differentiable in w .
Therefore it can be minimized with a simple gradient-based algorithm.

The core gradient computation of the algorithm decomposes per example. This allows us to
partition the dataset D into k partitions D1,D2, . . . ,Dk and compute the gradient as the sum of the
per-partition gradients. This property gives rise to a simple parallelization strategy: assign each
Evaluator partition Di and launch a Task to compute the gradient on a per-partition basis. The
per-partition gradients are aggregated to a global gradient, which is used to update the modelw .
The new model is then broadcast to all Evaluator instances, and the cycle repeats.

4.2.2 Elastic Group Communications. For machine learning, we built an elastic group communi-
cations library as a REEF Service that exposes Broadcast, Reduce, Scatter, and Gather operators
familiar to Message Passing Interface (MPI) [18] programmers. It can be used to establish a com-
munication topology among a set of leaf Task participants and a root Task. The leaf Tasks are
given Reduce and Gather operators to send messages to the root Task, which can aggregate those
messages and use Broadcast and Scatter operators to send a message to all leaf Tasks. Operation
details, such as the Scatter order of data items or the implementation of the Reduce function, are
all adjustable and provided as APIs.
The communication structure of nodes can be established as a tree topology with internal

nodes performing the pre-aggregation steps, given that the Reduce operation is associative. Other
topologies like a flat topology, where all non-root Tasks are leaf nodes, are also possible. The Service
offers synchronization primitives that can be used to coordinate bulk-synchronous processing
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(BSP) [52] rounds. Crucially, the Service delegates topology changes to the application Driver,
which can decide how to react to the change, and instruct the Service accordingly. For example,
the loss of a leaf Task can be ignored or repaired (synchronously or asynchronously). The loss
of an internal Task cannot be ignored and must be repaired, although the method of restoration
is configurable, either by replacing the dead Task with another existing Task, or by blocking the
computation until a new Task has spawned to take the dead Task’s place. In case of asynchronous
repairs, the application is notified when repairs have been finished.

In an elastic learning algorithm, the loss of leaf Tasks can be understood as the loss of partitions
in the dataset. We can interpret these faults as being a sub-sample of the data, in the absence of any
statistical bias that this approach could introduce. This allows us to tolerate faults algorithmically,
and avoid pessimistic fault-tolerance policies enforced by other systems [1, 15, 28, 29, 60]. The
performance implications are further elaborated in Section 5.2, and in greater detail in [33].

4.2.3 Dolphin, a Machine Learning Framework. REEF’s event-driven mechanism and dependency
injection system allow of a framework that supports fine-grained control over various compo-
nents as well as pluggable implementations of custom algorithms. Dolphin is a machine learning
framework that utilizes these features and services. Dolphin provides multi-stage BSP execution of
distributed machine learning algorithms, where each worker is represented by a single REEF Task.
A stage is defined as a set of iterations of repeated computation and communication. For each stage,
workers communicate with a master node, implemented as another Task, via the elastic group
communications library, updating the model accordingly (see Section 4.2.1). A stage ends when a
certain convergence threshold is met, and is followed by either another stage or job termination.
The REEF Driver is implemented to handle this stage logic, submitting Tasks per data partition and
managing faulty Evaluators. When a stage transition occurs, the Driver checks that Tasks have
completed without any errors and then submits new Tasks for the next stage.

Such stage sequences makes it possible for complex jobs to be divided into simple steps instead
of having complicated control flows. Moreover, such abstraction goes well with REEF’s Evaluator
design, as Evaluators are retainable throughout the whole job; Dolphin will use existing resources
as much as it can to reduce resource allocation time by simply submitting subsequent Tasks on
the same Evaluators instead of replacing Evaluators with new ones. On the other hand, there
is no such concept of retaining containers in YARN. In order to implement the same feature of
utilizing available resources on YARN without additional allocation, all Dolphin stages will need to
be packed into a single container from the start, leading to crude synchronization schemes and
vague stage abstractions.

Dolphin also supports distributed asynchronous model training using a parameter server [27, 42].
The parameter server is deployed as a REEF service, and thus can run independently with a Task

that is on the same Evaluator. The parameter server provides a key-value store for globally shared
model parameters and processes parameter update messages from workers. Using the Wake event
handling mechanism of event handlers, parameter updates are received from the workers in an
asynchronous manner and are applied to the global model using multiple threads concurrently. The
workers, which take responsibility of receiving the updated model and sending back gradients to
the server, can continue to compute gradients without waiting for their latest updates to be added
to the server’s parameters. Training deep neural networks is one of the many machine learning
applications which can achieve excellent performance with a parameter server [12, 14]. Dolphin
provides a deep learning module, where each worker trains a neural network model and shares
parameters of the model using the parameter server.
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4.3 CORFU on REEF
CORFU [6] is a distributed logging tool providing applications with consistency and transactional
services at extremely high throughput. There are a number of important use cases for a shared,
global log, such as:

• Driving remote checkpoint and recovery.
• Exposing a log interface with strict total-ordering to drive replication and distributed locking.
• Enabling transaction management.

Importantly, all of these services are driven without I/O bottlenecks by using a novel paradigm
that separates control from the standard leader-I/O, prevalent in Paxos-based systems. In a nutshell,
internally a CORFU log is striped over a collection of logging units. Each unit accepts a stream of
logging requests at wire-speed and sequentializes their I/O. In aggregate, data can be streamed
in parallel to/from logging-units at full cluster bisection bandwidth. There are three operational
modes, in-memory, non-atomic persist, and atomic-persist. The first logs data only in memory
(replicated across redundant units for "soft" fault tolerance). The second logs data opportunistically
to stable storage, with optional explicit sync barriers. The third persists data immediately before
acknowledging appends. A soft-state sequencer process regulates appends in a circular fashion
across the collection of stripes. A CORFU master controls the configuration and grows/shrinks
the stripe-set as needed. Configuration changes are utilized both for failure recovery and for
load-rebalancing.

The CORFU architecture matches the REEF template. CORFU components are implemented as
task modules, one for the sequencer, and one for each logging-unit. The CORFU master is deployed
in a REEF Driver, which provides the control and monitoring capabilities that the CORFU master
requires. For example, when a logging unit experience a failure, the Driver is informed, and the
CORFU master can react by deploying a replacement logging unit and reconfiguring the log. In the
same manner, the CORFU master interacts with the log to handle sequencer failures, react when a
storage unit becomes full, and rebalance loads.

An important special failure case is the CORFU master itself. For applications like CORFU, it is
important that a master does not become a single point of failure. REEF provides Service utilities
for triggering checkpointing and for restarting a Driver from a checkpoint. The CORFU master
uses these hooks to backup the configuration-state it holds onto the logging units themselves.
Should the master fail, a recovery CORFU Driver is deployed by the logging units.

In this way, REEF provides a framework that decouples CORFU’s resource deployment from its
state, allowing CORFU to be completely elastic with respect to fault tolerance and load-management.

Using CORFU from REEF: A CORFU log may be used from other REEF jobs by linking with
a CORFU client-side library. A CORFU client finds (via CORFULib) the CORFU master over a
publicized URL. The master informs the client about direct ports for interacting with the sequencer
and the logging-units. CORFULib interacts with the units to drive operations like log-append and
log-read directly over the interconnect.

CORFU as aREEF service: Besides running as its own application, CORFU can also be deployed
as a REEF Service. The Driver side of this Service subscribes to the events as described above, but
now in addition to the other event handlers of the application. The CORFU and application event
handlers compose to form the Driver and jointly implement the control-flow of the application,
each responsible for a subset of the Evaluators. This greatly simplifies the deployment of such an
application, as CORFU then shares the event life-cycle and does not need external coordination.
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4.4 Surf
Surf is a distributed in-memory caching tier for big data analytics, built on REEF. By caching data
residing in distributed file systems (e.g., HDFS) in memory via Surf, analytics jobs can avoid I/O
delays. For example:
• Placing a data set that is periodically read in Surf to avoid disk I/O delays.
• Replicating a hot dataset across Surf nodes to avoid I/O delays due to network hotspots.
• Writing temporary data directly to Surf to avoid disk I/O and replication network I/O delays
of distributed file systems.

Surf is deployed as a long-running service. A Surf deployment is configured to cache a cluster’s
distributed file system. Surf also contains an HDFS-compatible client library that talks to the
deployed cache; analytics frameworks can use Surf transparently with this library by simply
replacing existing paths with Surf paths. For example, reads and writes to HDFS can be cached
through Surf by replacing ‘hdfs://namenode/’ with ‘surf://driver/’.
Surf is designed to maximize analytics cluster utilization by elastically scaling the memory

allocated to its cache. Increasing the cache is desirable to keep a working set in memory as needed,
while decreasing the cache allows concurrently running analytics jobs to use the released memory.
This approach is in contrast to other cache systems (HDFS cache [4], Tachyon [26]) which require
a cluster operator to dedicate a static amount of memory on each machine for caching.

Surf’s architecture fits well with REEF’s abstractions. The Driver plays the role of manager and
point of contact for the system. Its main roles are (1) elastically deploying Evaluators and Tasks, (2)
receiving client read and write operations and forwarding them to the correct Tasks, (3) managing
and updating file metadata, and (4) enforcing replication policies. A long-running Task is started
on each Evaluator which satisfies data read and write operations as given by the Driver. The Task

transfers data between client and the backing distributed file system, caches the data locally, and
sends status update heartbeats to the Driver.

Surf’s implementation relies heavily on the following REEF components:
Wake Event Handling: Surf Tasks must deal with multiple data read/write operations with

clients and backing file systems. Surf makes use of Wake’s stage implementation to queue and
execute these operations concurrently without adding additional threading complexity.

Tang Configuration: Surf is built to support additional backing file systems. This configuration
is done using Tang. Tang’s dependency injection approach allows Surf’s core logic to remain simple
since it is agnostic to the particular file system implementation. Tang’s static analysis checks make
sure that deployment configurations are free of misconfigured types or missing parameters.

Driver-side Events: The Driver supports elastic scale-out and scale-in by sending Evaluator

allocation and shutdown requests. Evaluator state management is easily encapsulated from the data
caching logic by listening to the resulting events regarding Evaluator allocation, launch, shutdown,
and failure.

Environment Adapter: Surf resource requests are translated by the Environment Adapter,
allowing it to support elasticity in all REEF-supported resource manager environments.
Developing Surf also led to improvements in REEF. REEF heartbeats from Evaluator to Driver

were adjusted to allow triggering an immediate send, and in addition to periodic heartbeats.
This change came about because Evaluators that reach a metrics threshold for scale-out must
immediately contact the Driver. If not, we risk caching operations waiting for scale-out operations
to conclude. In addition, REEF’s YARN allocation method was modified based on experience
deploying Surf to a large-scale cluster. We observed that Surf start up time was around hundreds
of seconds for allocating tens of Evaluators. It turned out that REEF was sending YARN resource
requests one at a time, causing round trip latency overheads to add up. By modifying REEF to batch
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multiple resource requests to YARN, hundreds of Evaluators can now be allocated in about one
second. This improvement has allowed more efficient use of REEF on the YARN cluster.

4.5 Azure Stream Analytics
Azure Stream Analytics (ASA) is a fully managed stream processing service offered in the Microsoft
Azure Cloud. It allows users to setup resilient, scalable queries over data streams that could be
produced in “real-time.” The service hides many of the technical challenges from its users, including
machine faults and scaling to millions of events per second. While a description of the service as a
whole is beyond the scope here, we highlight how ASA uses REEF to achieve its goals.

ASA implements a REEF Driver to compile and optimize a query into a data-flow of processing
stages, taking user budgets into consideration, similar to [7, 10, 20, 35, 38, 51, 60, 61]. Each stage is
parallelized over a set of partitions i.e., an instance of a stage is assigned to process each partition
in the overall stage input. Partitioned data is pipelined from producer stages to consumer stages
according to the data-flow. All stages must be started before query processing can begin on input
data streams. The Driver uses the stage data-flow to formulate a request for resources; specifically,
an Evaluator is requested on a per-stage instance. A Task is then launched on each Evaluator to
execute the stage instance work on an assigned partition. It is highly desirable that this bootstrap
process happens quickly to aid experimentation.
At runtime, an ASA Task is supported by two REEF Services, which aided in shortening the

development cycle. The first is a communications Service built on Wake for allowing Tasks to send
messages to other Tasks based on a logical identifier, which is independent to the Evaluator onwhich
they execute, making Task restart possible on alternate Evaluator locations. The communication
Service is highly optimized for low-latency message exchange, which ASA uses to communicate
streaming partitions between Tasks. The second is the checkpointing Service that provides each
Task with an API for storing intermediate state to stable storage, and an API to fetch that state (e.g.,
on Task restart).
ASA is a production-level service that has had very positive influence on REEF developments.

Most notably, REEF provides mechanisms for capturing the Task-level log files—on the containers
where the Task instances executed—to a location that can be viewed locally postmortem. REEF
also provides an embedded HTTP server as a REEF Service that can be used to examine log files
and execution status at runtime. These artifacts were motivated during the development and
initial deployment phases of ASA. Further extensions and improvements are expected as more
production-level services, already underway at Microsoft, are developed on REEF.

4.6 Summary
The applications described in this section underscore our original vision of REEF as being:

(1) A flexible framework for developing distributed applications on Resource Manager services.
(2) A standard library of reusable system components that can be easily composed (via Tang)

into application logic.
Stonebraker and Cetintemel argued that the “one size fits all model” is no longer applicable to the
database market [43]. We believe this argument naturally extends to “Big Data” applications. Yet,
we also believe that there exists standard mechanisms common to many such applications. REEF is
our attempt to provide a foundation for the development of that common ground.

5 EVALUATION
Our evaluation focuses on microbenchmarks (Section 5.1) that examine the overheads of Apache
REEF for allocating resources, bootstrapping Evaluator runtimes, and launching Task instances;
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Fig. 9. Combined (REEF + YARN) overheads for jobs with short-lived (1 second) tasks

we then report on a task launch overhead comparison with Apache Spark. Section 5.2 showcases
the benefits of the REEF abstractions with the elastic learning algorithm (from Section 4).

Unless we mention, the default experiment environment is based on YARN version 2.6 running
on a cluster of 35 machines equipped with 128GB of RAM and 32 cores; each machine runs Ubuntu
Linux and OpenJDK Java 1.7.

5.1 Microbenchmark
Key primitive measurements: Figure 8 shows the time it takes to dispatch a local Wake Event,
launch a Task, and bootstrap an Evaluator. There are roughly three orders of magnitude difference in
time between these three actions. This supports our intuition that there is a high cost to reacquiring
resources for different Task executions. Further, Wake is able to leverage multi-core systems in
its processing of fine-grained events, achieving a throughput rate that ranges from 20-50 million
events per second per machine.

Overheads with short-lived Tasks: In this experiment, the Driver is configured to allocate
a fixed number of Evaluators and launch Tasks that sleep for one second and exit. This setup
provides a baseline (ideal) job time interval (i.e., #Tasks ∗ one second) that we can use to assess
the combined overhead of allocating and bootstrapping Evaluators, and launching Tasks. Figure 9
evaluates this setup on jobs configured with various numbers of Evaluators and Tasks. We compute
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the combined overhead as

combined overhead = (
actual runtime

ideal runtime
− 1) ∗ 100

, where
ideal runtime =

#Tasks ∗ task execution time

#Evaluators .

The figure shows that as we run more Tasks per Evaluator, we amortize the cost of communicating
with YARN and launching Evaluators, and the overall job overhead decreases. This is consistent
with the earlier synthetic measurements that suggest spawning tasks is orders of magnitudes faster
than launching Evaluators. Since job parallelism is limited to the number of Evaluators, jobs with
more Evaluators suffer higher overheads but finish faster.

Evaluator/Task allocation and launch time breakdown: Here we dive deeper into the time
it takes to allocate resources from YARN, spawn Evaluators, and launching Tasks. Figure 10
shows these times for a job that allocates 256 Evaluators. The light gray and black portions are
very pessimistic estimates of the REEF overhead in starting an Evaluator on a Node Manager
and launching a Task on a running Evaluator, respectively. The majority of the time is spent in
container allocation (gray portion), the time from container request submission to the time the
allocation response is received by the Driver; this further underscores the need to minimize such
interactions with YARN by retaining Evaluators for recurring Task executions.
The time to launch an Evaluator on an allocated container is shown by the light gray portion,

which varies between different Evaluators. YARN recognizes when a set of processes (from its
perspective) share files (e.g., code libraries), and only copies such files once from the Application
Master to the Node Manager. This induces higher launch times for the first wave of Evaluators.
Later scheduled Evaluators launch faster, since the shared files are already on the Node Manager

ACM Transactions on Computer Systems, Vol. 35, No. 2, Article 0. Publication date: September 2017.



Apache REEF: Retainable Evaluator Execution Framework 0:23

 1

 10

 100

10^3 10^4 10^5 10^6

O
ve

rh
ea

d 
(s

ec
on

ds
)

Number of tasks

REEF
Spark

(a) Absolute running time (y-axis) of jobs with varying
numbers of tasks (x-axis).

 0.1

 1

 10

 100

10^3 10^4 10^5 10^6

O
ve

rh
ea

d 
(%

)

Number of tasks

REEF
Spark

(b) Computed overheads (y-axis) of jobs with varying
numbers of tasks (x-axis).

Fig. 11. Overheads of REEF and Spark for jobs with short-lived (100ms) tasks.

from earlier Evaluator executions; recall, we are scheduling 256 Evaluators on 35 Node Managers.
Beyond that, starting a JVM and reporting back to the Driver adds about 1-2 seconds to the launch
time for all Evaluators. The time to launch a Task (black portion) is fairly consistent, about 0.5
seconds, across all Evaluators.

Comparison with Apache Spark: Next, we compare REEF with Spark 1.2.0 to understand task
execution overheads better in 25 D4 Microsoft Azure instances. Out of the total 200 cores available,
we allocated 300 YARN containers, each with 1GB of available memory. We execute tasks that do
not incur CPU contention between containers. In addition, each application master was allocated
4GB of RAM. The experiment begins by instantiating a task runtime (an Evaluator in the REEF
case, and an Executor in the Spark case) on each container. The respective application masters then
begin to launch a series of tasks, up to a prescribed number. The combined overhead is computed
as above.
Before reporting results for this experiment, we first describe the differences in the overheads

for launching tasks. In Spark, launching a task requires transferring a serialized closure object with
all of its library dependencies to the Spark Executor, which caches this information for running
subsequent tasks of the same type. In REEF, library dependencies are transferred when the Evaluator
is launched. This highlights a key difference in the REEF design, which assumes complete visibility
into what tasks will run on an Evaluator. Thus, the overhead cost of launching a Task in REEF boils
down to the time it takes to package and transfer its Tang configuration.
Figure 11 reports on the overheads of REEF and Spark for jobs that execute a fixed number of

tasks configured to sleep for 100ms before exiting. We reduce the sleep time to 100ms to stress
Driver. The total running time is reported in Figure 11a and the percentage of time spent on
overhead work (i.e., total running time normalized to ideal running time) is in Figure 11b. In all
cases, the overhead in REEF is less than Spark. In both systems, the overheads diminish as the job
size (i.e., number of tasks) increases. On the lower end of the job size spectrum, Spark overheads
for transferring task information (e.g., serialized closure and library dependencies) are much more
pronounced; larger jobs benefit from the caching this information on the Executor. At larger job
sizes, both system overheads converge to about the same.

Driver high availability:We evaluate how the Driver HA feature performs with two experi-
ments. Both experiments were run in the .NET runtime on 20 Azure HDInsight instances. Figure 12
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the middle.

measures time to recover when a certain number of Evaluators (up to 128 Evaluators) runs before
a Driver failure. We plot the average of the time to recover over five runs. The trend is mostly
linear with respect to the number of Evaluators up to 128 Evaluators as expected; the mean time
to recover each Evaluator is 0.29 seconds.
Figure 13 measures the number of Evaluators registered with the Driver at a given point in

time, starting with zero Evaluator in the beginning to having 128 registered running Evaluators at
steady state. We intentionally trigger a Driver failure in-between to observe the recovery behavior.
We can see that the Driver recovers all 128 Evaluators successfully in approximately 40 seconds.
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5.2 Resource Elastic Machine Learning
In this section, we evaluate the elastic group communications based machine learning algorithm
described in Section 4.2. The learning task is to learn a linear logistic regression mode using a Batch
Gradient Descent (BGD) optimizer. We use two datasets for the experiments, both derived from the
splice dataset described in [1]. The raw data consists of strings of length 141 with 4 alphabets (A,
T, G and C).
Dataset A contains a subset of 4 million examples sampled from splice, used to derive binary
features that denote the presence or absence of n-grams at specific locations of the string with
n = [1, 4]. The dimensionality of the feature space is 47, 028. This dataset consists of 14GB of data.
Dataset B contains the entire dataset of 50 million examples, used to derive the first 100, 000 features
per the above process. This dataset consists of 254GB of data.

Algorithm: We implemented the BGD algorithm described in Section 4.2.1 on top of the elastic
group communications Service described in Section 4.2.2. The Driver assigns a worker Task to
cache and process each data partition. Each worker Task produces a gradient value that is reduced
to a global gradient on the root Task using the Reduce operator. The root Task produces a new model
that is Broadcast to the worker Tasks. The job executes in iterations until convergence is achieved.

Developing on REEF: REEF applications can be easily moved between Environment Adapters

(Section 3.1.4). We used this to first develop and debug BGD using the Local Process adapter. We
then moved the application to YARN with only a single configuration change. Figure 14 shows
the convergence rate of the algorithm running on Dataset A on the same hardware in these
two modes: “Local” denotes a single cluster machine. In the YARN mode, 14 compute Tasks are
launched to process the dataset. The first thing to note is that the algorithm performs similarly in
both environments. That is, in each iteration, the algorithm makes equivalent progress towards
convergence. The main difference between these two environments is in the start-up cost and
the response time of each iteration. YARN suffers from a higher start-up cost due to the need to
distribute the program, but makes up for this delay during execution, and converges about 14
minutes earlier than the local version. Considering the 14x increased hardware, this is a small
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Fig. 15. Ramp-up experiment on Dataset B

speedup that suggests to execute the program on a single machine which REEF’s Environment

Adapters made it easy to discover.
Elastic BGD: Resource Managers typically allocate resources as they become available. Tradi-

tional MPI-style implementations wait for all resources to come online before they start computing.
In this experiment, we leverage the Elastic Group Communications Service to start computing as
soon as the first Evaluator is ready. We then add additional Evaluators to the computation as they
become available. Figure 15 plots the progress in terms of the objective function measured on the
full dataset over time for both elastic and non-elastic versions of the BGD job. The line labeled
Non-elastic BGD waits for all Evaluators to come online before executing the first iteration of the
learning algorithm. The line labeled Elastic BGD starts the execution as soon as the first Evaluator
is ready, which occurs after the data partition is cached. New Evaluators are incorporated into the
computation at iteration boundaries.

We executed these two strategies on an idle YARN cluster, which means that resource requests
at the Resource Manager were immediately granted. Therefore, the time taken for an Evaluator to
become ready was in (1) the time to bootstrap it, and (2) the time to execute a Task that loaded and
cached data in the root Context. As the Figure shows, the elastic approach is vastly preferable in
an on-demand resource managed setting. In effect, elastic BGD (almost) finishes by the time the
non-elastic version starts.
While this application-level elasticity is not always possible, it is often available in machine

learning where each machine represents a partition of the data. Fewer partitions therefore represent
a smaller sample of the data set. Models obtained on small samples of the data can provide good
starting points [11] for subsequent iterations on the full data.

Algorithmic fault handling: We consider machine failure during the execution. We compare
three variants: (1) No failure; (2) ignoring the failure and continuing with the remaining data and
(3) our proposal that uses a first-order Taylor approximation of the missing partitions’ input until
the partitions come back online. Figure 16 shows the objective function over iterations. Our method
shows considerable improvement over the baselines. Surprisingly, we even do better than the no
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Fig. 17. Scale-out iteration time with partitions of 1GB.

failure case. This can be explained by the fact that the use of the past gradient has similarities to
adding a momentum term which is well-known to have a beneficial effect [37].

Scale-out: Figure 17 shows the iteration time for varying scale-up factors. It grows logarithmi-
cally as the data scales linearly (each partition adds approximately 1GB of data). This is positive
and expected, as our Reduce implementation uses a binary aggregation tree; doubling the Evaluator
count adds a layer to the tree.
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6 RELATEDWORK
REEF provides a simple and efficient framework for building distributed systems on Resource
Managers like YARN [53] and Mesos [19]. REEF replaces software components common across
many distributed data processing system architectures [7, 10, 20, 38, 46, 60, 61] with a general
framework for developing the specific semantics and mechanisms in a given system (e.g., data-
parallel operators, an explicit programming model, or domain-specific language). Moreover, REEF is
designed to be extensible through its Service modules, offering applications with library solutions
to common mechanisms such as group communication, data shuffle, or a more general RDD [60]-
like abstraction, which could then be exposed to other higher-level programming models (e.g.,
MPI).

With its support for state caching and group communication, REEF greatly simplifies the imple-
mentation of iterative data processing models such as those found in GraphLab [28], Twister [16],
Giraph [45], and VW [1]. REEF can also be leveraged to support stream processing systems such
as Storm [30] and S4 [34] on managed resources, as demonstrated with Azure Streaming Ana-
lytics (Section 4.5). Finally, REEF has been designed to facilitate sharing data across frameworks,
short-circuiting many of the HDFS-based communications and parsing overheads incurred by
state-of-the-art systems.
The Twill project [49] and REEF both aim to simplify application development on resource

managers. However, REEF and Twill go about this in different ways. Twill simplifies programming
by exposing a developer abstraction based on Java Threads that specifically targets YARN, and
exposes an API to an external messaging service (e.g., Kafka [24]) for its control-plane support. On
the other hand, REEF provides a set of common building blocks (e.g., job coordination, state passing,
cluster membership) for building distributed applications, virtualizes the underlying Resource
Manager layer, and has a custom built control-plane that scales with the allocated resources.

Slider [48] is a framework that makes it easy to deploy and manage long-running static applica-
tions in a YARN cluster. The focus is to adapt existing applications such as HBase and Accumulo [44]
to run on YARN with little modification. Therefore, the goals of Slider and REEF are different.

Tez [38] is a project to develop a generic DAG processing framework with a reusable set of data
processing primitives. The focus is to provide improved data processing capabilities for projects like
Hive, Pig, and Cascading. In contrast, REEF provides a generic layer on which diverse computation
models, like Tez, can be built.

7 SUMMARY AND FUTUREWORK
We embrace the industry-wide architectural shift towards decoupling resource management from
higher-level application stacks. In this paper, we propose a natural next step in this direction, and
present REEF as a scale-out computing fabric for resource managed applications. We started by
analyzing popular distributed data-processing systems, and in the process we isolated recurring
themes, seeding the design of REEF. We validated these design choices by building several applica-
tions, and hardened our implementation to support a commercial service in the Microsoft Azure
Cloud.
REEF is an ongoing project and our next commitment is towards providing further building-

blocks for data processing applications. Specifically, we are actively working on a checkpoint service
for fault-tolerance, a bulk-data transfer implementation that can “shuffle” massive amounts of data,
an improved low-latency group communication library, and an abstraction akin to RDDs [59],
but agnostic to the higher-level programming model. Our intention with these efforts is to seed
a community of developers that contribute further libraries (e.g., relational operators, machine
learning toolkits, etc.) that integrate with one another on a common runtime. In support of this
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goal, we have set up REEF as an Apache top-level project. Code and documentation can be found
at http://reef.apache.org. The level of engagement both within Microsoft and from the research
community reinforces our hunch that REEF addresses fundamental pain-points in distributed
system development.
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