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Abstract. Work to date on algorithms for message-passing systems has
explored a wide variety of types of faults, but corresponding work on
shared memory systems has usually assumed that only crash faults are
possible. In this work, we explore situations in which processes accessing
shared objects can fail arbitrarily (Byzantine faults).

1 Introduction

1.1 Motivation

It is commonly believed that message-passing systems are more difficult to pro-
gram than systems that enable processes to communicate via shared memory.
Many experimental and commercial processors provide direct support for shared
memory abstractions, and increasing attention is being paid to implementing
shared memory systems either in hardware or in software [Bel92, CG89, LH8&9,
TKB92]. Moreover, several middleware systems have been built to implement
shared memory abstractions in a message-passing environment. Of primary inter-
est here are those that employ replication to provide fault-tolerant shared mem-
ory abstractions, particularly those designed to mask the arbitrary (Byzantine)
failure of processes implementing these abstractions (e.g., see [PG89, SE+92,
Rei96, KMM98, C1.99, MRO(]). These middleware systems generally guaran-
tee that shared objects themselves do not “fail”, and hence, that their integrity,
safety properties, and access interfaces and restrictions, are preserved. Neverthe-
less, since legitimate clients accessing these objects might fail arbitrarily, they
could corrupt the states of these objects in any way allowed by the object inter-
faces.

The question we address in this paper is: What power do shared memory
objects have in such environments, in achieving any form of coordination among
distributed processes that access these objects? This question is daunting, as
Byzantine faulty processes can configure objects in any way allowed by the object
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interfaces. Thus, seemingly even very strong shared objects such as consensus
objects (which are universal for crash failures) might not be very useful in such a
Byzantine environment, as faulty processes erroneously set their decision values.
Surprisingly, although work to date on algorithms for message-passing systems
has explored a wide variety of types of faults, corresponding work on shared
memory systems has usually assumed that only crash faults are possible. Hence,
our work is the first study of the power of objects shared by Byzantine processes.

1.2 Summary of results

We generalize the crash-fault model of shared memory to accommodate Byzan-
tine faults. We show how a variety of techniques can be used to cooperate reliably
in the presence of Byzantine faults, including bounds on the numbers of faulty
processes, redundancy, access control lists that constrain faulty processes from
accessing specific objects, and persistent objects (such as sticky bits [Plo89])
which cannot be overwritten. (We call objects that are not persistent, such as
read /write registers, ephemeral.) We define a notion of shared object that is
appropriate for this fault model, in which waiting between concurrent opera-
tions 1s permitted. We explore the power of some specific shared objects in this
model, proving both universality and impossibility results, and finally identify
some non-trivial problems that can be solved in the presence of Byzantine faults
even when using only ephemeral objects.

The notions of consensus objects and sticky bits (a persistent, readable con-
sensus object) in the Byzantine model, are formally defined in section 2. The
results are:

1. Universality result: Our main result shows that sticky bits can be used

to construct any other object (i.e., they are universal), assuming that the
number of (Byzantine) faults is bounded by (v/n—1)/2, where n is the total
number of processes.
To prove this result, a universal construction is presented that works as
follows: First, sticky bits are used to construct a strong consensus object,
i.e., a consensus object whose decision is a value proposed by some correct
process. Equipped with strong consensus objects, we proceed to emulate any
object. OQur emulation borrows closely from Herlihy’s universal construction
for crash faults [Her91], but differs in significant ways due to the need to
cope with Byzantine failures.

2. Bounds on faults: We observe that strong consensus objects, used to prove
the universality result, cannot be constructed when the possible number of
faults is ¢ > n/3. We observe that there exists a simple bounded-space
universal object assuming ¢ < n/3, and a trivial unbounded-space universal
object assuming any number of ¢ < n faults. We prove that when a majority
of the processes may be faulty, even weak consensus (i.e., a consensus object
whose decision is a value proposed by some correct or faulty process) cannot
be solved using any of the familiar non-sticky objects.



3. Constructions using ephemeral objects: While the universality result
involves sticky bits, the impossibility result shows that consensus cannot be
implemented using known objects that are not persistent. This raises the
question of what can be done with such ephemeral objects. We show how
various objects, such as k-set consensus and k-pairwise consensus, can be
implemented in a Byzantine environment using only atomic registers. Then
we show that familiar objects such as test&set, swap, compare&swap, and
read-modify-write, can be used to implement election objects for any number
of processes and under any number of Byzantine faults.

1.3 Related work

The power of various shared objects has been studied extensively in shared mem-
ory environments where processes may fail benignly, and where every operation
is wait-free: the operation is guaranteed to return within a finite number of steps.
Objects that can be used (together with atomic registers) to give a wait-free im-
plementation of any other objects are called universal objects. Previous work on
wait-free (and non-blocking) shared objects provided methods (called universal
constructions) to transform sequential implementations of arbitrary shared ob-
jects into wait-free concurrent implementations, assuming the existence of a uni-
versal object [Her91, Plo89, JT92]. In particular, Plotkin showed that sticky bits
are universal [Plo89], and independently, Herlihy proved that consensus objects
are universal [Her91]. Herlihy also showed that shared objects can be classified
according to their consensus number: that is, the maximum number of processes
that can reach consensus using the object [Her91]. Attie investigates the power
of shared objects accessed by Byzantine processes for achieving wait-free Byzan-
tine agreement. He proves that strong agreement is impossible to achieve using
resettable objects, 1.e., objects that can be reset back to their initial setting, and
constructs weak agreement using sticky bits [At£00].

Assume that at some point in a computation a shared register is set to some
unexpected value. There are two complementary ways to explain how this may
happen. One is to assume that the register’s value was set by a Byzantine process
(as may happen in the model of this paper). The other way is to assume that
the processes are correct but the register itself is faulty. The subject of memory
faults (as opposed to process faults) has been investigated recently in several
papers [AGMT95, JCT98]. These papers assume any number of process crash
failures, but bound the number of faulty objects, whereas we bound the number
of (Byzantine) faulty processes, but each might sabotage all the objects to which
it has access.

As described in the introduction, our focus on a shared memory Byzantine
environment is driven by previous work on message-passing systems that emulate
shared memory abstractions tolerant of Byzantine failures (e.g., [PG89, SE+92,
Rei96, KMM98, C1.99, MR00]). Though these systems guarantee the correctness
of the emulated shared objects themselves, the question is what power do these
objects provide to the correct processes that use them, in the face of corrupt
processes accessing them.



2 Model and definitions

Our model of computation consists of an asynchronous collection of n processes,
denoted pq, ..., pn, that communicate via shared objects. In any run any process
may be either correct or faulty. Correct processes are constrained to obey their
specifications, while faulty processes can deviate arbitrarily from their specifi-
cations (Byzantine failures) limited only by the assumptions stated below. We
denote by t the maximum number of faulty processes.

2.1 Shared objects with access control lists

Each shared object presents a set of operations. e.g., z.op denotes operation op
on object x. For each such operation on z, there is an associated access control
list (ACL) that names the processes allowed to invoke that operation. Fach
operation execution begins with an invocation by a process in the operation’s
ACL, and remains pending until a response is received by the invoking process.
The ACLs for two different operations on the same object can differ, as can the
ACLs for the same operation on two different objects. The ACLs for an object
do not change. For any operation z.op, we say that z is k-op if the ACL for
x.op lists k processes. We assume that a process not on the ACL for x.op cannot
invoke x.op, regardless of whether the process is correct or Byzantine (faulty).
That is, a (correct or faulty) process cannot access an object in any way except
via the operations for which it appears on the associated ACLs.

We note that the systems that motivated our study typically employ repli-
cation to fault-tolerantly emulate shared memory abstractions. Therefore, ACLs
can be implemented, e.g., by storing a copy of the ACL with each replica and
filtering out disallowed operations before applying them to the replica. In this
way, only operations allowed by the ACLs will be applied at correct replicas.

2.2 Fault tolerance and termination conditions

In wait-free fault models, no bound is assumed on the number of potentially
faulty processes. (Hence, no process may safely wait upon an action by another.)
Any operation by a process p on a shared object must terminate, regardless of
the concurrent actions of other processes. This model supports a natural and
powerful notion of abstraction, which allows complex implementations to be
viewed as atomic [HW90]. We extend this model in two ways: first, we make
the more pessimistic assumption that process faults are Byzantine, and second,
we make the more optimistic assumption that the number of faults 1s bounded
by t, where ¢ is less than the total number of processes, n. With the numbers
of failures bounded away from n, it becomes possible (and indeed necessary)
for processes to coordinate with each other, using redundancy to overcome the
Byzantine failures of their peers. This means that processes may need to wait
for each other within individual operation implementations.

An example that may provide some intuition is a sticky bit object emulated
by an ensemble of data servers, such that the value written to it must reflect a



value written by some correct process. A distributed emulation may implement
this object by having servers set the object’s value only when ¢ 4+ 1 different
processes write to it the same value. Of course, this object will be useful only
when any value written to the object is indeed written by at least ¢ 4+ 1 processes,
and so an application must guarantee that ¢ + 1 correct processes write identical
values. Below, we will see examples of such constructions.

Such an implementation is not wait-free, and raises the question of appropri-
ate termination conditions for object invocations in a Byzantine environment.
To address such concerns, we introduce two object properties, ¢-threshold and
t-resilience. The first captures termination conditions appropriate for an object
on which each client should invoke a single operation, and which function cor-
rectly once enough correct processes access them. The second is appropriate
when processes perform multiple operations on an object, each of which may
require support from a collection of correct processes.

t-threshold: For any operation x.op, we say that x.op is #-threshold if z.op,
when executed by a correct process, eventually completes in any run p in which
n —t correct processes invoke x.op.

t-resilience: For any operation x.op, we say that xz.op is t-resilient if xz.op,
when executed by a correct process, eventually completes in any run p in which
each of at least n — ¢ correct processes infinitely often has a pending invocation
of x.op.

An object is t-threshold (#-resilient) if all the operations it supports are -
threshold (#-resilient). Notice that ¢-threshold implies ¢-resilience, but not vice
versa.

2.3 Object definitions

Below we specify some of the objects used in this paper.

Atomic registers: An atomic register x is an object with two operations: x.read
and z.write(v) where v # L. An z.read that occurs before the first z.write()
returns L. An z.read that occurs after an z.write() returns the value written in
the last preceding z.write() operation. Throughout this paper we employ wait-
free atomic registers, i.e., z.read or z.write() operations by correct processes
eventually return (regardless of the behavior of other processes).

Sticky bits: A sticky bit z is an object with two operations: z.read and
z.write(v) where v € {0,1}. An z.read that occurs before the first z.write()
returns L. An z.read that occurs after an z.write() returns the value written in
the first z.write() operation. We will be concerned with wait-free sticky bits.

Weak consensus objects: A weak (binary) consensus object z is an object with
one operation: z.propose(v), where v € {0, 1}, satisfying: (1) The z.propose() op-
eration returns the same value, called the consensus value, to every process that
invokes it. (2) If the consensus value is v, then some process invoked z.propose(v).

Strong consensus objects: A strong (binary) consensus object x strengthens
the second condition above to read: (2) If the consensus value is v, then some
correct process invoked x.propose(v).



Observe that one sticky bit does not trivially implement a strong consensus
object, where each process first writes this bit and then reads it and decides
on the value returned. The first process to write the bit might be a faulty one,
violating the requirement that the consensus value must be proposed by some
correct process. (In Lemmas 2 and 3 we describe more complex implementations
of strong consensus from sticky bits.) Tndeed, strong consensus objects do not
have sequential runs: the additional condition, using redundancy to mask fail-
ures, requires at least ¢ + 1 processes to invoke xz.propose() before any correct
process returns from this operation. (In addition, Theorem 4 in Section 3.2 shows
that t-resilient strong consensus objects are ill-defined when ¢ > n/3.)

Throughout the paper, unless otherwise stated, by a consensus object we
mean a strong consensus object. Also, atomic registers and sticky bits are always
assumed to be wait-free.

3 A universal construction

This section contains the main result of this paper, the construction of a universal
t-resilient object from wait-free sticky bits. That i1s, we show that sticky bits are
universal when the number of faults 1s small enough.

We assume any fault-tolerant object, o, is specified by two relations:

apply C INVOKE x STATE x STATE,

and reply C INVOKE x STATE x RESPONSE,

where INVOKE is the object’s domain of invocations, STATE is its domain
of states (with a designated set of start states), and RESPONSE is its domain
of responses. The apply relation denotes a nondeterministic state change based
on the specific pending invocation and the current state (invocations do not
block: we require a target state for every invocation and current state), and the
reply relation nondeterministically determines the calculated response, based
on the pending invocation and the updated state.® It is necessary to define
two relations because in fault-tolerant objects (such as strong consensus), the
response may depend on later invocations. The apply relation allows the state to
be updated once the invocation occurs, without yet determining the response.
The reply relation may only allow a response to be determined when other
pending invocations update the state.

For example, a t-threshold strong consensus object can be specified as fol-
lows: STATE is the set of integer pairs, (z,y), 0 < 2,y <, or the singletons 0
and 1, with (0,0) as the single start state. For all integers #, y and u,v in {0, 1}
(constrained as shown), the apply relation is, {(PROPOSE(0), (2 < t,¥), (¢ +

5 This formulation generalizes Herlihy’s specification of wait-free objects by a single
relation apply C INVOKE x STATE x STATE x RESPONSE, restricted (by the
wait-free condition) to have at least one target state and response defined for any pair
INVOKE x STATE [Her91]. This formulation is insufficient to define fault-tolerant

objects such as strong consensus.



Ly)}) U {(proPOSE(L), (z,y < t),(z,y + 1))} U {(proPOSE(0), (¢,y),0)} U
{(PrROPOSE(1), (z,t),1}) U {(PROPOSE(u),v € {0,1},v)}, and the reply relation
is {(PROPOSE(u),v € {0,1},RETURN(v))}. Hence, each invocation of a propose
operation enables apply to increment the appropriate counter in the state. Con-
current invocations introduce race conditions (as to which application of apply
occurs first. Once ¢+ 1 applications of the same value occur, the state is commit-
ted to that binary value, and the responses of pending invocations are enabled.

For the purposes of the universal construction below, we resolve any non-
determinism, and assume that the first relation is a function from INVOKE x
STATE to STATE, and that the second relation is a partial function from
INVOKE x STATE to RESPONSE. Given these restrictions, we may assume,
without loss of generality, that the object’s domain of states is the set of strings
of invocations, and that the function from INVOKE x STATE to STATE,
simply appends the pending invocation to the current state.

Theorem 1. Any t-resilient object can be tmplemented using:

1. (t 4 1)-write(), n-read sticky bits and 1-write(), n-read sticky bits, provided
that n > (t + 1)(2t + 1); or

2. (2t 4+ 1)-write(), (2t + 1)-read sticky bits and 1-write(), n-read sticky bits,
provided that n > (2t 4+ 1)2.

Figure 1 describes a universal implementation. In the lemmas, we provide two
constructions of (strong) binary consensus objects using sticky bits, which differ
in the access restrictions.

Lemma?2. If n > (t + 1)(2t + 1), then an n-propose() t-threshold consensus
object can be implemented using (t + 1)-write(), n-read sticky bits.

Proof: Let o be the consensus object that is being implemented. Let m = LH_LIJ
Partition the n processes into blocks By, ..., B,,, each of size at least t + 1, and
let 21,...,2m be sticky bits with the property that the ACL for a;.write() is
B; (or a (¢t + 1)-subset thereof) and the ACL for z;.read is {p1,...,pn}. For a
correct process p € B; to emulate o.propose(v), it executes x;.write(v) (or skip
if p is not in the ACL for z;) and, once that completes, repeatedly executes
zj.read for all 1 < j < m until none return L. p chooses the return value
from o.propose(v) to be the value that is returned from the read operations on
a majority of the z;’s.% All correct processes obtain the same return value from
their o.propose() emulations because the z;’s are sticky. If no correct process
emulates o.propose(v), then since m > 2¢ 4+ 1, v will not be returned from the
reads on a majority of the z;’s and thus will not be the consensus value. Because
each correct process reads z;, 1 < j < m, until none return L, termination is
guaranteed provided that each sticky bit is set. Since each z; has t +1 processes
proposing to it, it follows that o.propose() is guaranteed to return when at least
n — ¢ perform propose() operations. |

6 In case m is even and the number of 1’s equals the number of 0’s, the majority value
is defined to be 1.



Lemma3. If n > (2t + 1)%, then an n-propose() t-threshold consensus object
can be implemented using (2t + 1)-write(), (2t + 1)-read sticky bits and 1-write(),
n-read sticky bits.

Proof: Let o be the consensus object that is being implemented. Let ry,... 7,
be 1-write(), n-read sticky bits such that the ACL for r;.write() is {p;}. Let
m = L#J Partition the n processes into blocks By, ..., B,,, each of size at
least 2t + 1, and let x4, ..., z,, be sticky bits with the property that the ACLs
for x;.write() and x;.read are both B; (or a (2t 4 1)-subset thereof). For a correct
process p; € B; to emulate o.propose(v), it executes z;.write(v) (or skip if p is
not in the ACL for z;) and, once that completes, it executes r; < x;.read. p;
then repeatedly reads the (single-writer) bits of all processes until for each By,
it observes the same value Vj in the bits of ¢ + 1 processes in Bg; note that Vj
must be the value returned by x.read (to a process allowed to execute xy.read).
The value that occurs as t + 1 such V}’s is selected as the return value from
o.propose(v). Because z; is sticky and B; contains at most ¢ faulty processes,
V; is unique; thus, all correct processes obtain the same return value from their
o.propose() emulations. If no correct process emulates o.propose(v), then since
m > 2t 4+ 1, v cannot occur in the majority of the V}’s. a

3.1 Proof of Theorem 1

For simplicity, we initially describe a universal construction of objects for which
the domain of invocations is finite. Subsequently, we explain how to modify the
construction to implement objects with (countably) infinite invocation domains.

The construction conceptually mimics Herlihy’s construction showing that
consensus is universal for wait-free objects in the fail-stop model [Her91]. Due
to the possibility of arbitrarily faulty processes in our system model, however,
construction below differs in significant ways.

The construction labors to ensure that operations by correct processes even-
tually complete, and that each operation by Byzantine processes either has no
impact, or appears as (the same) valid operation to the correct processes. There
are two principal data structures:

1. For each process p; there is an unbounded array Announcel[é][1...], each ele-
ment of which is a “cell”| where a cell is an array of [log(|[INVOKE]|)] sticky
bits. The Announce[][j] cell describes the j-th invocation (operation name
and arguments) by p; on o. Accordingly, the ACL for the write() operation
of each sticky bit in each cell of Announce[i] names p;.

2. The object itself is represented as an unbounded array Sequence[l...] of
process-id’s, where each Sequence[k] is a [log(n)] string of ¢-threshold, strong
binary consensus objects. We refer to the value represented by the string of
bits in Sequence[k] simply as Sequence[k]. Intuitively, if Sequence[k] = ¢ and
Sequence[l], ..., Sequence[k — 1] contains the value ¢ in exactly j — 1 posi-
tions, then the k-th invocation on o is described by Announce[7][j]. In this
case, we say that Announce[i][j] has been threaded.



type: ID: array of [log(n)] strong consensus objects
CELL: array of [log(|[INVOKE]|)] sticky bits

global variables:
Announce[l..n][1...], array of CELL

for all 7, 1 < < n, and j, elements of Announce[i][j] are writable by p;

Sequence[1...], infinite array of I Ds, each accessible by all processes

variables private to process p;:
MyNextAnnounce, index of next vacant cell in Announce[:], initially 1
NextAnnounce[l..n], for each 1 < j < n, index in Announce[7][]

of next operation of p; to be read by p;, initially 1

CurrentState € STATE, p;’s view of the state of o, initially the initial state of o.
NextSeq, next position to be threaded in Sequence[] as seen by p;, initially 1
NameSuffix, [log(n)] bit string

(1) write, bit by bit, the invocation,
o.op.invoke of o.op into Announce[:][MyNextAnnounce]
(2) MyNextAnnounce++
3 Apply operations until o.op is applied and p; can return.
s Each while loop iteration applies exactly one operation.
(3) while ((NextAnnounce[i] < MyNextAnnounce) or
((NextAnnounce[z] > MyNextAnnounce)
and (reply(o.op.invoke, CurrentState) is not defined))) do

(4) £ + NextSeq (mod n) 3 Select preferred process to help.
(5) NameSuffix < emptystring
(6) for k = 0 to [log(n)] do ; Loop applies the operation one bit per iteration.
Search for a valid process index to propose
(7) while ((Announce[¢ 4+ 1][NextAnnounce[f + 1]] is invalid)
or (NameSuffix is not a suffix of the bit encoding of £+ 1)) do

(8) £+ £+ 1 (mod n) od

; Propose the k’th bit (right to left) of £+ 1
(9) prepend(NameSuffix, Sequence[NextSeq][k].propose((£ + 1)&(2%))
(10) od ; A new cell has been threaded by NameSuffix in Sequence[NextSeq]
(11) CurrentState

apply(Announce[NameSuffix][NextAnnounce[NameSuffix]], CurrentState)
) NextAnnounce[NameSuffix] + +
) NextSeq+-+
4)  od
) return(reply(o.op.invoke, CurrentState))

Figure 1: Universal implementation of o.op at p;.

The universal construction of object o is described in Figure 1 as the code
process p; executes to implement an operation o.op, with invocation o.op.invoke.
In outline, the emulation works as follows: process p; first announces its next
invocation, and then threads unthreaded, announced invocations onto the end
of Sequence. Tt continues until it sees that its own operation has been threaded,
and that enough additional invocations (if any) have been threaded, that it can
compute a response and return. To assure that each announced invocation is
eventually threaded, the correct processes first try to thread any announced,



unthreaded cell of process pyy1 into entry Sequence[k], where £ = k(mod) n.
(Once process pg41 announces an operation, at most n other operations can be
threaded before po11’s.)

In more detail, process p; keeps track of the first index of Announcel[i] that
is vacant in a variable denoted MyNextAnnounce, and first (line 1) writes the
invocation, bit by bit, into Announce[i][MyNextAnnounce], and (line 2) incre-
ments MyNextAnnounce. To keep track of which cells it has seen threaded (in-
cluding its own), p; keeps n counters in an array NextAnnounce[l..n], where
each NextAnnounce[j] is one plus the number of times 7 has read cells of j
in Sequence, and hence the index of Announce[j] where i looks to find the
next operation announced by j. Hence, having incremented MyNextAnnounce,
NextAnnounce[i] = MyNextAnnounce — 1 until the current operation of p; has
been threaded.

This inequality is thus one disjunct (line 3) in the loop (lines 4-10) in which p;
threads cells. Once p;’s cell is threaded, (and NextAnnounce[i] = MyNextAnnounce),
the next conjunct (again line 3) keeps p; threading cells until a response to the
threaded operation can be computed. (At which time it exits the loop and re-
turns the associated value (line 15).) Notice that in some cases, this may require
any finite number of additional operations to be threaded after o0.op, but by the
t-resilient condition, as long as operations of correct processes are eventually
threaded, eventually o.op can return. For example, if 0.op is the propose() opera-
tion of a strong consensus object, then it can return once at least ¢ + 1 propose()
invocations with identical values occur. Process p; keeps an index NextSeq which
points to the next entry in Sequence[l,...] whose cells it has not yet accessed.

To thread cells, process p; proposes (line 9) the binary encoding of a process
id, £ + 1, bit by bit, to Sequence[NextSeq]. In choosing pst1, process p; first
checks (first disjunct, line 7) that Announce[f + 1][NextAnnounce[¢ + 1]] contains
a valid encoding of an operation invocation. (And, as discussed above, p; gives
preference (line 4) to a different process for each cell in Sequence.)

Starting (line 5) with the emptystring, p; accamulates (line 9) the bit-by-bit
encoding of the id being recorded in Sequence[NextSeq] into a local variable,
NameSuffix. If a bit being proposed by p; is not the result returned (second
disjunct, line 7), then p; searches (line 8) for another process to help, whose id
matches the bits accumulated in NameSuffix. (The properties of strong consensus
assure that such a process exists.)

Once process p; accumulates all the bits of the threaded cell into NameSuffix
(the termination condition (line 6) of the for loop (lines 7-10)), it can update
(line 11) its view of the object’s state with this invocation, and increment its
records of (line 12) process NameSuffix’s successfully threaded cells and (line 13)
the next unread cell in Sequence. Having successfully threaded a cell, p; returns
to the top of the while loop (line 3).

The sequencing and correct semantics of each operation follow trivially from
the sequential ordering of invocations in Sequence and the application of the
apply and reply functions. The proper termination of all correct operations follow
as argued above from the ¢-threshold property of the embedded consensus objects



and from the #-resilience of the object o.

The construction and this argument address objects with finite domains of
invocation. We next briefly outline the modifications necessary to accommodate
objects with (countably) infinite domains of invocation. The quandary here is
that the representations of invocations using sticky bits are unbounded. Suppose
we naively change the type CELL to (unbounded) sequence of sticky bits.

When process p; attempts to read (line 7) an invocation in Announce[f +
1][NextAnnounce[f + 1]], a faulty process might cause p; to read forever, by itself
writing forever, in such a way that each finite prefix is a valid but incomplete
encoding of an invocation. (For any encoding, such a sequence exists by Konig’s
lemma.) This problem can be avoided by interleaving reads of the bits of each
entry in Announce[{+ 1][NextAnnounce[l..n]], starting as before with the next bit
of NextAnnounce[f + 1], until one of the accumulated strings validly encodes an
invocation. Details of the bookkeeping required, and the argument that correct
invocations are eventually threaded, are left to the reader. (Though note that
the number of invocations that may be threaded before a correct process’s an-
nouncement is now dependent on the relative lengths of different encodings.) O

3.2 Resilience and impossibility

The proof of Theorem 1 presents a universal construction of t-resilient objects,
where ¢ < (y/n—1)/2. Naturally, one would like to know whether there are more
fault-tolerant universal constructions, and in the limit, whether wait-free uni-
versal constructions exist. Focusing on improving the the bound ¢t < (v/n—1)/2
in Theorem 1, that is, finding a universal construction or impossibility proofs
t > (v/n — 1)/2, we note that the construction in Figure 1 builds modularly on
t-resilient strong consensus. The ¢ < (y/n — 1)/2 bound of Theorem 1 follows
from the constructions of strong consensus from sticky bits, in Lemmas 2 and 3.
Constructions of strong consensus from sticky bits for larger values of ¢ would
imply a more resilient universality result. The theorem below demonstrates that
such a search is bounded by ¢t < n/3.

Theorem4. Fort > n/3, there is no t-resilient n-propose() (strong) consensus
object.

Proof. Assume to the contrary that there exists such an object. Let Py and Py
be two sets of processes such that for each P; (where ¢ € {0,1}) the size of P; is
[n/3] and all processes in P; propose the value ¢ (i.e., have input ¢). Run these
two groups as if all the 2[n/3] processes are correct until they all commit to a
consensus value. Without loss of generality, let this value be 0. Next, we let all
the remaining processes propose 1 and run until all commit to 0. We can now
assume that all the processes in Py are faulty and reach a contradiction. a

We point out that it is easy to define objects that are universal for any
number of faults. An example is the append-queue object, which supports two
operations. The first appends a value onto the queue, and the second reads the
entire contents of the queue. By directly appending invocations onto the queue,
the entire history of the object can be read.



4 Ephemeral objects

In this section, we explore the power of ephemeral objects. We prove an im-
possibility result for a class of erasable objects, and give several fault-tolerant
constructions.

FErasable objects: An erasable object is an object in which each pair of oper-
ations op; and op,, when invoked by different processes, either (1) commute
(such as a read and any other operation) or (2) for every pair of states s;
and sa2, have invocations invoke; and invokes such that apply(invokey, s1) =
apply(invokes, sa). Such familiar objects as registers, test&set, swap, read-modify-
write are erasable. (This definition generalizes the notion of commutative and
overwriting operations [Her91].)

Theorem 5. For anyt > n/2, there is no implementation of a t-resilient
n-propose() weak consensus object using any set of erasable objects.

Proof. Assume to the contrary the such an implementation, called A, is possible.
We divide the n processes into three disjoint groups: Py and P; each of size at
least | (n—1)/2], and a singleton which includes process p. Consider the following
finite runs of algorithm A:

1. po is a run in which only processes in Py participate with input 0 and halt
once they have decided. They must all decide on 0. Let O be the (finite) set
of objects that were accessed in this run. and let si be the state of object o;
at the end of this run.

2. pp 1s a run in which only processes in P; participate with input 1 and halt
once they have decided. They must all decide on 1. Let Oy be the (finite) set
of objects that were accessed in this run, and let s} be the state of object o;
at the end of this run.

3. pi is a run in which processes from Py are correct and start with input 0,
and processes from P are faulty and start with input 1. It is constructed as
follows. First the process from Py run exactly as in pg until they all decide
on 0. Then, the processes from Py set all the shared objects in (O — Oyp) to
the values that these objects have at (the end of) p1, and set the values of
the objects in (01 N Og) to hide the order of previous accesses That is, for
objects in which all operations accessible by Py and P; commute, P; runs
the same operations as in run pg. For each remaining object o;, Py invokes
an operation invokey such that P, has access to an operation invoke; where
apply(invokey , sb) = apply(invokey , sb).

4. p} is a run in which processes from P; are correct and start with input 1,
and processes from Py are faulty and start with input 0. It is constructed
symmetrically to py: First the process from P; run exactly as in p; until
they all decide on 1. Then, as above the processes from Py set all the shared
objects in (Og — O1) to the values that these objects have at (the end of)
po. For objects in which all operations accessible by Py and P; commute,
Py runs the same operations as in run pg. For each remaining object o;, Py
invokes the operation invoke; defined in pf.



By construction, every object is in the same state after pj and p}. But if we
activate process p alone at the end of pf), it cannot yet decide, because it would
decide the same value if we activate process p alone at the end of p. So p must
wait for help from the correct processes (which the ¢-resilience condition allows
it to do) to disambiguate these identical states.

Having allowed p to take some (ineffectual) steps, we can repeat the con-
struction again, scheduling P, and P, to take additional steps in each run, but
bringing the two runs again to identical states. By repeating this indefinitely, we
create two infinite runs, in each of which the correct processes, including p, take
an infinite number of steps, but in which p never decides, a contradiction. a

4.1 Atomic registers

Next we provide some examples of implementations using (ephemeral) atomic
registers. The first such object is ¢-resilient k-set consensus [Cha93].

k-set consensus objects: A k-set consensus object x i1s an object with one
operation: z.propose(v) where v is some number. The z.propose() operation
returns a value such that (1) each value returned is proposed by some process,
and (2) the set of values returned is of size at most k.

Theorem 6. For any t < n/3, if t < k then there is an implementation of a
t-resilient n-propose() k-set consensus object using atomic registers.

Proof. Processes p1 through p:y1 announce their input value by writing it into
a register announceli], whose value is initially L. Each process repeatedly reads
the announce[l..t + 1] registers, and echoes the first non-_L value it sees in any
announce[j] entry by copying it into a l-writer register echo[i, j]. Interleaved
with this process, p; also reads all the echo[l..n, 1.t + 1] registers, and returns
the value it first finds echoed the super-majority of 2n/3 + 1 times in some
column echo[l..n, k]. In subsequent operations, it returns the same value, but first
examines announce[l..t + 1] array and writes any new values to echo[i, 1.1 + 1].

Using this construction, no process can have two values for which a super-
majority of echos are ever read. Moreover, any correct process among p; through
pe+1 will eventually have its value echoed by a super-majority. Hence, every
operation by a correct process will eventually return one of at most ¢t +1 different
values. ad

The implementation above of k-set-consensus constructs a t-resilient object.
The next result shows that registers can be used to implement the stronger
t-threshold condition. (The proof is omitted from this extended abstract.)

k-pairwise set-consensus objects: A k-pairwise set-consensus object x is an ob-
ject with one operation: z . propose(v) where v is some number. The 2. propose()
operation returns a set of at most k values such that (1) each value in the set
returned is proposed by some process, and (2) the intersection of any two sets
returned is non-empty.

Theorem 7. For any t < n/3, there is an implementation of a t-threshold
n-propose() (2t + 1)-pairwise set-consensus object using atomic registers.



4.2 Fault-tolerant constructions using objects other than registers

Even in the presence of only one crash failure, it is not possible to implement
election objects [TM96, MW8&T7] or consensus objects [LA87, FLP85] using only
atomic registers. Next we show that many other familiar objects, such as 2-
process weak consensus, test&set, swap, compare&swap, and read-modify-write,
can be used to implement election objects for any number of processes and under
any number of Byzantine faults.

FElection objects: An election object # is an object with one operation: z.elect().
The x.elect() operation returns a value, either 0 or 1, such that at most one
correct process returns 1, and if only correct processes participate then exactly
one process gets 1 (that process is called the leader). Notice that it is not re-
quired for all the processes to “know” the identity of the leader. We have the
following result. (Proof omitted from this extended abstract.)

Theorem 8. There is an implementation of (1) n-threshold n-elect() election
from two-process versions of weak consensus, testéiset, swap, compareéiswap,
or read-modify-write, and (2) 2-threshold 2-propose() weak consensus from
2-elect() election.

5 Discussion

The main positive result in this paper shows that there is a t-resilient universal
construction out of wait-free sticky bits, in a Byzantine shared memory envi-
ronment, when the number of failures ¢ is limited. This leaves open the specific
questions of whether it is possible to weaken the wait-freedom assumption (as-
suming sticky bits which are ¢-threshold or ¢-resilient) and/or to implement a
t-threshold object (instead of a t-resilient one).

We have also presented several impossibility and positive results for imple-
menting fault-tolerant objects. There are further natural questions concerning
the power of objects in this environment, such as: Is the resilience bound in our
universality construction tight for sticky bits? What is the resilience bound for
universality using other types of objects? What type of objects can be imple-
mented by others? The few observations regarding these questions in Section 3.2
and 4 only begin to explore these questions.
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