
Survivable Consensus Objects
(Extended Abstract)

Dahlia Malkhi Michael K. Reiter

AT&T Labs-Research, Florham Park, NJ, USA
fdalia,reiterg@research.att.com

Abstract

Reaching consensus among multiple processes in a dis-
tributed system is fundamental to coordinating distributed
actions. In this paper we present a new approach to build-
ing survivable consensus objectsin a system consisting of a
(possibly large) collection of persistent object servers and a
transient population of clients. Our consensus object imple-
mentation requires minimal support from servers, but at the
same time enables clients to reach coordinated decisions
despite the arbitrary (Byzantine) failure of any number of
clients and up to a threshold number of servers.

1. Introduction

A consensus object is a shared object to which a client
can propose a value and receive a value in return. The con-
sensus object returns the same value to each client, and the
returned value is one proposed by some client. Applica-
tions of consensus objects to achieving distributed coordi-
nation are numerous. For example, a consensus object can
be used to implement distributed locking: Each client pro-
poses its own identifier, and the consensus object returns
the identifier of the client to which the lock is granted. If
the consensus object supports “commit” or “abort” propos-
als, then it can be used to implement transactional atomic
commitment.

In this paper we describe a protocol for implementing a
survivableconsensus object in a distributed system, i.e., a
consensus object that retains its correctness despite the ar-
bitrary corruption (Byzantine failure) of some number of
components involved in its implementation. The system
model for which we describe our consensus object imple-
mentation is one in which there is a (possibly large) set of
persistent object servers and an unknown number of tran-
sient clients that interact with the servers asynchronously;
see Figure 1. Clients communicate directly only with
servers, performing operations on primitive objects (de-

scribed later) implemented at the servers. Using these prim-
itive objects, the clientsemulatea consensus object with
the specification described above. The result is a consen-
sus object emulation that allows a client to obtain a con-
sensus value in anexpectedlow-degree-polynomial number
of primitive object operations as a function of the number
of clients (implementations that deterministically guarantee
termination are known to be impossible to achieve [8]), re-
gardless of how many other clients simultaneously engage
the object. The consensus object is emulated with no server-
to-server or client-to-client communication. Moreover, the
consensus object retains its properties despite even the mali-
cious behavior of any number of clients and a limited num-
ber of servers, and is thus survivable in an environment that
may suffer Byzantine failures.

object repository

C

C

C

C

C

C

C

clients

servers

S

S

S

S

S

Figure 1. System model: Persistent servers
support replicated objects

This system model is motivated by our larger ongoing
effort to build a highly scalable, application-independent in-
frastructure of servers to support replicated objects, called
Phalanx [15]. The goals of Phalanx impose a number
of constraints that rendered existing consensus protocols
inadequate. First, implementing a consensus object us-

ing an inter-server protocol, whose decision value is made
available to clients, complicates server design and man-
dates server-to-server communication, which hurts scala-
bility. Second, an inter-client consensus protocol would
require the simultaneous participation of a high percent-
age of the client population to converge on a consensus
value (see Section 2). A third alternative is a shared-
memory approach, in which servers would support minimal,
consensus-independent abstractions, e.g., reads and writes
to shared variables [10], and the clients would emulate a
consensus object simply by accessing those variables. This
appears to be impossible, even using randomization, due
to the following inherent difficulty: Using objects such as
read/write registers, (Byzantine) faulty clients could config-
ure the variables so that one correct client infers one con-
sensus value, and then reconfigure the variables so that a
later correct client infers a different value (and so that any
traces left behind by the first correct client appear to have
been made by a malicious one).

The consensus object implementation described here
strikes a balance among these options. Servers support
shared objects calledtimed append-only arrays. Clients
then use these objects to emulate a consensus object. These
objects enable clients to append values, but not to delete or
modify previously appended values. In addition, each ap-
pended value is labeled with a logical time at which it was
appended. Intuitively, these objects prevent the scenario
described above because malicious clients cannot “undo”
what they once did; they can only add to it. And, the times-
tamps partially capture the order in which different clients
appended different values, which also cannot be reordered
by malicious clients. At the same time, timed append-only
arrays are simple enough to implement with no server-to-
server communication and simple server-resident logic.

2. Related work

Consensus objects have traditionally been studied in two
system models: The shared memory model and the mes-
sage passing model. In each model, clients execute a
distributed protocol to implement the consensus specifica-
tion. In the shared memory model, clients communicate via
shared memory locations. In the message passing model,
clients communicate by exchanging messages over a net-
work. An important distinction between the two is that in
the shared memory model, consensus object implementa-
tions are possible in which each client can obtain the con-
sensus value even if it is the only client that participates in
the protocol [1]. In the message passing model, typically a
threshold of (correct) processes need to simultaneously co-
operate to achieve agreement.

As described in Section 1, our work mixes elements of
both models: Clients communicate via shared objects as in

the shared memory model, but these shared objects are em-
ulated by exchanging messages with servers, a threshold of
which are required to participate to emulate those shared ob-
jects. Other work has supported read/write shared-memory
emulations in a message passing system, e.g., [12, 3], but
these systems do not provide for fault tolerance. An emula-
tion of atomic shared read/write registers tolerant of benign
failures was provided in [2]. Compared with the above, our
work differs in that (i) a consensus object is strictly stronger
than any of the above object semantics; (ii) our protocols
are survivable, i.e., resilient to Byzantine failures of any
number of clients and a limited number of servers, and (iii)
the underlying quorum techniques we employ foraccessing
servers [13, 14] scale to very large systems of servers.

Consensus cannot be implemented deterministically in a
message-passing or shared-memory system, i.e., in a way
that guarantees a unique consensus value and termination
in a finite number of steps [8]. Numerous message-passing
protocols have employed randomization to guarantee finite
termination with probability one; see [4] for a survey. Asp-
nes and Herlihy [1] introduced a shared-memory random-
ized consensus protocol for a benign failure environment
that uses read/write shared registers and terminates in ex-
pected time polynomial in the number of clients. Similarly,
our consensus protocol is randomized and its expected con-
verging time is polynomial in the number of clients (assum-
ing a computationally bounded adversary). Of the previous
works, our protocol most closely resembles [1], but differs
significantly due to its tolerance to Byzantine faulty clients
and servers, and due to its implementation in a message-
passing (as opposed to shared memory) system.

3. System model and assumptions

Our system model consists of a group ofserversand
some numbern of clients. Clients are denoted by
p1; : : : ; pn, or justp; q; : : :when subscripts are unnecessary.
Servers and clients need not be distinct. Acorrectclient or
server is one that obeys its functional specification. Afaulty
client or server, on the other hand, can deviate from its spec-
ification arbitrarily (Byzantine failures [11]), limited only
by the assumptions stated below. Faulty clients and servers
include those that fail benignly.

We assume that at mostb servers fail, whereb is a glob-
ally known constant, and that there is ab-masking quorum
systemQ known to all clients and servers [13]. That is,Q
is a set of subsets (quorums) of servers, such that (i) for any
Q1; Q2 2 Q, jQ1 \ Q2j � 2b + 1 and (ii) for any setB
of servers wherejBj = b, there is someQ 2 Q such that
B\Q = ;. In our protocols, clients interact with servers by
contacting a quorum of them. Intuitively, (i) enables clients
to infer correct replies from the contacted quorum, (ii) en-
sures that a client can always contact a full quorum [13].

The mechanism by which clients communicate to servers
is via aquorum remote procedure call. A client's invoca-
tion of Q-RPC(m), wherem is a request, returns responses
from a quorum of servers to the requestm. To do this,
Q-RPC(m) sendsm to servers as necessary to collect re-
sponses from a quorum, and then returns these responses
to the client. The Q-RPC module provides additional inter-
faces, e.g., that enable a caller to specify servers to avoid
because those servers have been detected to be faulty (e.g.,
based on responses they returned to other Q-RPCs), or that
enable a caller to issue a query to a partial quorum to com-
plete a previous Q-RPC in which faulty servers returned
useless values. For the purposes of this paper, however, we
omit these interfaces from further discussion. Q-RPC can
be implemented in anasynchronoussystem, i.e., without as-
suming any known bound on message transmission delays,
and thus our protocols are suited for an asynchronous sys-
tem. In our protocols, correct servers never send messages
to other servers, and correct clients never send messages to
other clients.

We assume the existence of trapdoor one-way func-
tions [7], which are sufficient for constructing digital sig-
nature schemes (e.g., [16]). We assume that each correct
server possesses a private key known only to itself with
which it can digitally sign messages, and that any other
client or server can verify the origin of a signed message
but cannot forge the signature of any correct server. So, if a
correct client or server attributes a signed message to a cor-
rect serveru, thenu sent it. Not all messages sent by servers
will be signed; we will explicitly indicate that the message
m is signed byu by denoting ithmiu. Aside from digital
signatures, we will also make use offunction sharing[6]
primitives based on one-way functions. These techniques
will be explained in the sections that use them.

4. Timed append-only arrays

The most basic function provided by the servers is the
maintenance of atimed append-only array�j for each client
pj. A timed append-only array�j is a single-writer multi-
readerobject that allowspj to appendvalues to the array
and any client toreadvalues from the array. Informally, the
object provides the following properties:

Append-Only: Values are appended to a timed append-
only array in a sequential order.

Write-Once: Values appended to a timed append-only ar-
ray are never modified or erased.

Timestamp: Each element in a timed append-only array is
timestamped with a vectort satisfying the following:

Global-Timestamp: t[0] is a Lamport timestamp [9]
that reflects the partial ordering of operations on all

arrays, such thatt[0] is greater than the corresponding
value in any array entry appended before this element
was appended.

Client-Timestamp: For each0 < j � n, t[j] denotes,
where not zero, that thet[j]' th append on�j was al-
ready completed when this element was appended.

A reader can access any element of the array. The reader
obtains the vector timestamp along with the value of an ar-
ray element, if written.

Intuitively, timed append-only arrays serve to implement
non-malleable communication among Byzantine fail-prone
clients: The first two properties guarantee that values are
appended to each array in a sequential order that any reader
can later observe. The timestamp properties enable clients
to partially disambiguate the order in which appends were
performed on different arrays.

4.1. Implementation

We begin by describing the implementation of timed
append-only arrays. Let�1; : : : ; �n denote the timed
append-only arrays maintained by the servers. Each timed
append-only array�j supports two kinds of operations:
Client pj can append some valuev to �j by executing
�j :append(v), and any client can read thei-th value in�j by
executing�j:read(i). The�j :read(i) operation is the simpler
of the two, and so we discuss it first.

Each timed append-only array�j is represented in each
serveru by a sequence of addresses�j;u[1]; �j;u[2]; : : : that
hold value/timestamp pairs. Each address is initially?.
The protocol for a client to read thei-th element of�j is
shown in Figure 2. The client executes a Q-RPC to ob-
tain the value/timestamp pair in�j;u[i] from each serveru
in some quorumQ. More specifically, each server responds
with a message of the formh�j-value : i; �j;u[i]iu; note
that this is digitally signed byu, so that it can be used in
theappend protocol below if necessary. The client obtains
the result of the read by discarding any value/timestamp
pair returned byb or fewer servers, and choosing the re-
maining (unique, as we show below) value/timestamp pair,
say hv; ti. The client also records the fact that it has read
the i-th element of�j by setting thej-th element of a lo-
cal arrayts to bei (if larger thants[j]), and retains the set
Cj;v;t = fh�j-value : i; hv; tiiû : û 2 Qg of at leastb + 1
signed messages forhv; ti.

The �j:append operation is significantly more involved
than the�j :read operation; see Figure 3. Each serveru

maintains, in addition to array entries, atimestamp gener-
ator Gu andecho inhibitorsek;u; 1 � k � n, all initially
zero. Thei-th �j:append proceeds in three phases. In the
first,pj sends its timestamp vectorts to a quorum of servers.
Recall thek-th element ofts (1 � k � n) indicates the

Client

return? if 8v̂; t̂ : jCj;v̂;t̂j � b

hv; ti (hv̂; t̂i : jCj;v̂;t̂j � b+ 1)
ts[j] maxfi; ts[j]g

fh�j-value : i; hvû; tûiiûgû2Q return value from Q-RPC

Q-RPC(h�j-query : ii)

returnhv; ti

8v̂; t̂ : Cj;v̂;t̂ fh�j-value : i; hv̂; t̂iiû : û 2 Qg

Serveru

send backh�j -value : i; �j;u[i]iu

h�j -query : ii:

Figure 2. The operation �j:read(i)

highest index of�k that pj has successfully read. In or-
der to reply topj ' s request, each serveru requires that for
each1 � k � n, it holds a value in�k;u[ts[k]]. Since this
value may have been written to a quorum not containingu,
pj piggybacksCk;�k[ts[k]] as needed on its request, which
it collected from servers when it read�k[ts[k]], to enable
u to fill in �k;u[ts[k]]. The serveru then verifies that for
each1 � k � n, it holds a value in�k;u[ts[k]] and, if so,
responds topj with its present value ofGu, digitally signed.

Upon the completion of this first Q-RPC,pj now for-
wards the digitally signed replies back to the servers via a
second Q-RPC. Based on these included messages, serveru

verifies thati > ej;u and then computes a vector timestamp
t for this�j :append operation that agrees withpj ' s ts array
in positions1 : : :n and that has a zeroth element higher than
any of the servers' timestamp generator values forwarded in
the request. The serveru “echoes”t together with the value
v thatpj is appending, by digitally signing both values and
sending them back topj . u then setsej;u i so that it will
never again echo a value for thei-th �j:append. Finally, af-
ter receiving echoes from aquorum of servers,pj commits
the append at a quorum of servers by forwarding these echo
messages to them in a third Q-RPC. Upon receiving this
third request, each serveru assigns�j;u[i] hv; ti and ac-
knowledges. The purpose of the echoes is to ensure that no
two correct servers write different values into�j;u[i]; this is
ensured because each server echoes only onei-th �j:append
value.

4.2. Properties

In proving properties of this implementation, we need to
introduce some additional notation and terminology. Note
that reads by faulty clients are ignored in the following.

Definition 4.1 A �j :read(i) operation by a correct client
beginswhen the client initiates the corresponding�j :read

protocol, and ends when the client returns from the�j :read

protocol.

Definition 4.2 The i-th �j :append beginswhen some cor-
rect server receivesh�j-gettime : i; tsi frompj , and itends
when�j;u[i] 6= ? at each correct serveru in some quorum.

By this definition, once thei-th �j:append has begun, it is
possible for it to end before the protocol in Figure 3 com-
pletes. In particular, if a clientpj0 reads the value of thei-th
�j :append while that append is going on, and then performs
a �j0:append, its own �j0 :append could complete thei-th
�j :append before the protocol for thei-th �j :append itself
completes. This property is made precise in Lemma 4.3.

Definition 4.3 Let e, e0 be any two operations (other than
reads by faulty clients). We say thate happens beforee0,
denotede � e0, iff e ends beforee0 begins. Ife0 6� e, we
denote ite � e0.

Note that� forms an irreflexive partial order, and that if
e1 � e2 � e3 � e4, thene1 � e4. Moreover, for any
two operationse1; e2 at a correct process, eithere1 � e2
or e2 � e1. That is, the operations executed by a cor-
rect process are totally ordered. On the contrary, operations
by a faulty client are not necessarily totally ordered by�.
Nevertheless, ife1 ande2 are thek-th andk0-th �j:append

operations, respectively, by a faulty processpj (i.e., corre-
sponding toh�j-gettime : k; tsi andh�j-gettime : k0; ts0i
messages frompj), such thatk < k0, then we will often use
“e1 � e2” as a shorthand to denote this.

Lemma 4.1 (Write-Once) Let e1 = �j :read(i) and e2 =
�j :read(i) be two operations at correct clients. Ife1 returns
hv; ti, thene2 returns either? or hv; ti.

Lemma 4.2 (Append-Only) Let e1 be thei-th �j :append,
and lete2 = �j:read(k), 1 � k � i, be an operation by a
correct process such thate1 � e2. Thene2 does not return
?.

Q-RPC(h�j -gettime : i; tsi
with 8k : Ck;�k [ts[k]] piggybacked as needed)

S1 = fh�j-time : i; ts; gûiûgû2Q1
 return value from Q-RPC

Q-RPC(h�j-propose : v; S1i)

S2 = fh�j-echo : i; v; tiûgû2Q2
 return value from Q-RPC

Q-RPC(h�j -commit : S2i)

fh�j-appenddone : û; iigû2Q3
 return value from Q-RPC

ts[j] i
return

Clientpj Serveru

Verify: 1) 8k; 1 � k � n : �k;u[ts[k]] 6= ?
2) ts[j] = i� 1

send backh�j-time : i; ts;Guiu

h�j-propose : v; fh�j -time : i; ts; gûiûgû2Q1
i:

h�j-gettime : i; tsi:

i > ej;u

send backh�j-echo : i; v; tiu

h�j-commit : fh�j-echo : i; v; tiûgû2Q2
i:

Gu maxfGu; t[0]g
send backh�j-appenddone : u; ii

Verify:
ej;u i
81 � k � n : t[k] ts[k]
t[0] maxû2Q1

fgûg + 1

�j;u[i] hv; ti

Figure 3. The i-th invocation of �j :append; v is the value appended

Henceforth, we will use the following notation: Ife is an
append operation of the forme = �j :append(v), such that
v is stored with timestampt, we denote this timestamp by
T (e) = t. The first lemma shows the main purpose of the
non-zero entries of a vector timestamp.

Lemma 4.3 (Client-Timestamp) Let e1 be the i-th
�j:append, and lete2 = �j0 :read(k), where1 � j0 � n

and1 � k � T (e1)[j0], be a read operation by a correct
process such thate1 � e2. Thene2 does not return?.

Lemma 4.4 (Global-Timestamp) If e1 = �j :append(v),
e2 = �j0 :append(v0), and e1 � e2, then T (e1)[0] <

T (e2)[0].

Corollary 4.1 Let e1, e2 = �j :append(v), e3 =
�j0 :append(v

0), and e4 be four events such thate1 � e2,
T (e2)[0] � T (e3)[0], ande3 � e4; thene1 � e4.

5. A consensus protocol

In this section, we describe a protocol by which clients
can emulate a consensus object by performing a series of
read and append operations on timed append-only arrays.
Each client begins the protocol with an initialpreferred
valueand ends the protocol by irrevocablydecidingon a
value. Intuitively, this decision value is the value “returned

by” the consensus object. The protocol ensures the follow-
ing two properties (due to space limitations, a proof of cor-
rectness is omitted).

Agreement: If any correct client decidesv, then all correct
clients decidev.

Validity : If any correct client decidesv, then some client
hadv as its input value.

Our protocol employs a round structure and high-level
strategy similar to [1], but otherwise differs significantly.
In our protocol, each client executes a sequence of logi-
cal rounds until it reaches a decision. There is one timed
append-only array per client for that client to communicate
values to the system by appending them to its array. Since
rounds at different clients proceed asynchronously, each
client attaches its round number toeach value it appends.
In each round, a client starts by appending its currently pre-
ferred value, and then reads the latest values appended by
all of the other processes to their arrays (a “global read”).
Among these values, the ones with the highest round num-
ber are called the leaders' values. If the leaders agree (i.e.,
last appended the same values), it tries to adopt their value
as its own preferred value and move to the next round (or
decide); if the leaders disagree and it is a leader itself, it
attempts to flip a (multivalued) coin, adopt the value of the
coin as its preferred value, and then move to the next round.

Decision is possible for a leader when all the processes who
disagree with its preferred value are at least two rounds be-
hind. Intuitively, this protocol converges at the latest when
a round starts with all the leaders preferring the same value.
We argue in Section 7 that by properties of the coin flip, this
occurs with some positive probability ateach round.

Several points need to be refined in the description
above. First, to adopt a new preferred value in a round (ei-
ther the leaders' or by coin flip), a client twice performs a
cycle of appending a value “announcing” its status and ex-
ecuting a new global read of all clients' latest values. If
the status of the leaders' value hasn' t changed during these
two cycles (i.e., either the leaders still disagree, or the lead-
ers still agree on the same value), then the client adopts the
value it intended to. If, however, the client detects a change
in the status of the leaders' value, then it starts the round
over. The two append/read cycles guarantee that with two
concurrently executing leaders, at least one will observe the
other's value and act consistently.

Second, the process for performing the global read, i.e.,
reading all clients' last-appended values, involves reading
the arrays of all clients up to the last filled slot, filtering out
any invalid values appended by faulty clients (which will
be defined precisely in Section 5.1), and returning a set of
latest (valid) values from all arrays. Even though this is a
compound operation, we will abuse notation and denote it
by a single eventLast, allowing it to be ordered as a single
operation via�. In particular, if aLast operatione1 starts
before some append operatione2 terminates, i.e.,e1 con-
tains a primitive read operatione01 such thate01 � e2, then
we say thate1 � e2.

Third, we need to specify how to flip a random coin. For
now, we denote this operation as subroutine Coin(). Meet-
ing the two properties of consensus (Agreement and Valid-
ity) requires simply that Coin() return a value that was ini-
tially preferred by some process. In addition, the Coin()
operation is important to the running time of the consensus
protocol. This will be the topic of discussion in Section 7.

In terms of data structures, each client maintains several
local variables:pref, which holds the client's present pre-
ferred value;r, which holds the client's current round num-
ber;hrj; vji1�j�n, which hold the latest (valid) round num-
ber/value pairs read from clients' arrays;leaderVals, which
is the set of leaders' values; andleaderRound, which is the
leaders' round number. And, as described above, there is a
separate timed append-only array per client. At the begin-
ning of its execution, each client appendsh0; prefi to its ar-
ray. In the remainder of this paper, an operation�j:append

by a clientpj is denoted simply byappend, and is under-
stood to apply to the array to whichpj is allowed to append.

The precise protocol executed by clientp at roundr
is given in Figure 4. TheLast subroutine, introduced
above, implements a “global read” plus identification of

(1) private varspref, r, hrj ; vji1�j�n , leaderVals, leaderRound

(2) append(hr; prefi)
(3) repeat
(4) Last()
(5) if (jleaderValsj > 1 _ ? 2 leaderVals)
(6) LeadersDisagree()
(7) else
(8) LeadersAgree()
(9) until roundr + 1 enabled

(10) subroutine LeadersAgree()
(11) pref (v : leaderVals = fvg)
(12) append(hr; prefi)
(13) Last()
(14) if (leaderVals 6= fprefg)
(15) return
(16) append(hr; prefi)
(17) Last()
(18) if (leaderVals 6= fprefg)
(19) return
(20) if (r = leaderRound^ 8j : (vj 6= pref) rj � leaderRound� 2))
(21) decide(pref)
(22) else
(23) enable roundr + 1

(24) subroutine LeadersDisagree()
(25) append(hr;?i)
(26) Last()
(27) if (jleaderValsj = 1 ^ ? 62 leaderVals)
(28) return
(29) append(hr;?i)
(30) Last()
(31) if (jleaderValsj = 1 ^ ? 62 leaderVals)
(32) return
(33) if (leaderRound = r)
(34) pref Coin()
(35) enable roundr + 1

(36) subroutine Last()
(37) 8j 2 f1; : : : ; ng: imax maxfi : �j:read(i) is justifiedg
(38) hhrj ; vji; tji �j:read(imax)
(39) leaderRound max1�j�nfrjg
(40) leaderVals fvj : rj = leaderRoundg

Figure 4. Round r of the consensus protocol

the leaders' round and values. If the leaders agree, the
LeadersAgree subroutine is invoked. This subroutine sim-
ply appends the leaders' value twice and if leader disagree-
ment or a change of leader value is not observed in be-
tween these appends, it moves the client to the next round
(or decides) with the leaders' value as its new preferred
value. If leader disagreement is observed byLast, the
LeadersDisagree subroutine is invoked. This routine ap-
pends? twice and, if the client is a leader, adopts a new pre-
ferred value by flipping a coin, provided that leader agree-
ment is not observed while this routine is executing.

5.1. Justified values

As indicated above, after each global read, the client uses
the observed values to determine its next preferred value. In
order to ensure correctness of our protocol, it is important
that the plausibility of these observed values is verified be-
fore they are used; otherwise, a faulty client could append

arbitrary values in an effort to misguide future preferred val-
ues of other clients. We therefore introduce the notion of a
justified value, which intuitively is an appended value that is
consistent with the protocol and, in particular, with the val-
ues that the appender's preceding global read must have ob-
served. After executing a global read, a client discards any
unjustified values and forms its next preferred value based
upon the justified values only.

Unfortunately, detecting justified values is not straight-
forward, because a reading client cannot accurately deter-
mine what values should have been observed by an append-
ing client prior to its append. We will now make use of the
Global-Timestamp property of our timed append-only ar-
rays, to derive an estimation of the values that the appending
client observed, as follows:

Definition 5.1 Let ep be anappend operation executed by
clientp, and leteq be a differentappend operation executed
by clientq. We say thatep definitely reflectseq if (i) p = q

andeq � ep or (ii) p 6= q and there existappend operations
e0p, e0q executed byp andq, respectively, such thateq � e0q ,
e0p � ep, andT (e0q)[0] � T (e0p)[0].

We make use of Definition 5.1 as follows: Recall that in
our consensus protocol, each process alternates global reads
(i.e., invocations ofLast) and append operations. Therefore,
if p operates as prescribed by the protocol, then betweene0p
andep as above, there must be aLast atp. By Corollary 4.1,
this implies thatp' s Last beforeep observed the value ap-
pended byeq . We now use this definition as a foundation
for justification of appended values.

Definition 5.2 LetO be a set ofappend operations gener-
ated in some execution of the system. Aserial executionof
O is a linear order on the elements ofO that extends the
per-client linear orders.

Definition 5.3 Let e be thei-th �j:append, with timestamp
T (e) = t. Thejustification setfor e is the set consisting of
thek-th �j0 :append operations for all1 � j0 � n and all
1 � k � t[j0].

Definition 5.4 Let e be thei-th �j :append. e is justified if
its justificationsetO contains all operations thate definitely
reflects and if there is a serial execution ofO followed by
e that is consistent with correct execution bypj . A justified
valueis one appended in a justifiedappend.

We note that by the properties of timed append-only ar-
rays, justification is well defined, i.e., it does not depend
on the reader of the appended value. Furthermore, all cor-
rect clients' appends are justified, and if a client executes
an unjustified append, then all of its future appends are also
unjustified.

5.2. The Coin() operation

According to the protocol of Figure 4, when a leader re-
peatedly observes leader disagreement, it sets its preferred
value to the output of a Coin() operation before moving to
the next round. At a correct client, this Coin() operation
(shown in Figure 5) returns a value taken from among the
values that have been appended by all clients in the proto-
col. More precisely, the Coin() operation works by reading
the value in the first element of each client's array (which,
by definition, is justified if it is of the formh0; v0i for some
v0), and if this value exists, adding this value to aview of
the values in the system. We say that theview so computed
is the view of the client in roundr. The Coin() operation
returns an element of thisview.

(1) subroutine Coin()
(2) view ;
(3) 8j 2 f1; : : : ; ng : hv; ti �j :read(1)
(4) if (hv; ti 6= ? and is justified)
(5) view view [fv0 : v = h0; v0ig
(6) k (ip() mod jviewj) + 1
(7) returnk-th largest element ofview

Figure 5. The Coin() operation

In Figure 5, the element returned from theview is se-
lected by aip operation that returns a nonnegative integer.
Correctness of the protocol requires nothing more ofip,
thoughip is very important to the running time of the pro-
tocol, as we show in Section 7.

6. Theip protocol

Before analyzing the running time of our protocol, it is
necessary to detail the implementation of theip operation.
This operation is implemented by a distributed protocol that
returns the same value to every correct client that invokes it
in roundr, i.e., theip value for roundr is unique. In addi-
tion, the round-r ip value cannot be predicted by any client
until some client completes theip protocol for that round.
Intuitively, in theip protocol the servers generate a deter-
ministic digital signature (such as an RSA signature [16])
on a string that includes the round number in which theip

protocol is invoked. By definition, digital signatures are un-
predictable to those not knowing the key to generate them.

The signature generation process must ensure that faulty
servers cannot computeip values ahead of time. This is
achieved by employing athreshold signature schemeto gen-
erate a signature. Informally, a(k;m)-threshold signature
scheme is a method of generating a public key andm shares
of the corresponding private key in such a way that for any
messagew, each share can be used to produce apartial
result from w, where anyk of these partial results can be

combined into the private key signature forw. Moreover,
knowledge ofk shares should be necessary to signw, in
the sense that without the private key it should be computa-
tionally infeasible to (i) create the signature forw without
k partial results forw, (ii) compute a partial result forw
without the corresponding share, or (iii) compute a share
or the private key withoutk other shares. Our replication
technique does not rely on any particular threshold signa-
ture scheme, provided that it is deterministic; the literature
includes such schemes (e.g., [5, 6]).

We implement theip protocol as follows. At service
initialization time, a (k;m)-threshold signature scheme,
with k = b+1 andm equal to the number of servers, is used
to generate a public key and one share of the private key for
each server. Each server's share is known only to itself; the
corresponding public key is assumed to be available to all
clients. Theip protocol for roundr then proceeds simply
as follows: the client executes a Q-RPC to obtain partial
results from a quorum of servers for the “message”r, and
combines them to form a valid signature forr. It returns
this value, interpreted as a nonnegative integer.

It is worth reviewing several properties of theip pro-
tocol that are necessary for the results of Section 7. First,
due to the properties of a threshold signature scheme, the
ip value for roundr is known nowhere prior to some client
completing the protocol for that round. Second, if we view
theip protocol as producing a result that is a sampling from
the space of integers up to some large (i.e., much larger than
jviewj; see Section 5.2) bound, it is reasonable to assume
ip samples uniformly at random from this space.1 Third,
because theip protocol produces a digital signature for
which all parties are assumed to have the verifying public
key, any value claimed to be produced by theip protocol
for roundr can be immediately verified. Fourth, because the
threshold signature scheme is deterministic, theip proto-
col returns the same value to any correct client that invokes
it in roundr. This doesnot imply that the Coin() operation
returns the same value to correct processes that invoke it in
roundr, because each client may have a differentview in
roundr (see Section 5.2). However, when all correct pro-
cesses invoking the Coin() operation in roundr have the
sameview, the Coin() operation will indeed return the same
value everywhere.

7. Running time

One of the motivations guiding our design of a consen-
sus object was to allow any single (correct) client to access

1This appears to be a reasonable assumption for threshold signature
schemes that generate RSA signatures. If this property is not realistic for
a threshold signature scheme of choice, then passing the signature through
a suitable cryptographic hash function (e.g., [17]) should adequately sim-
ulate the selection of a number uniformly at random from the space of all
hash values.

our consensus object solo and obtain the consensus decision
within a finite number of steps. In fact, in such a case, a solo
client will obtain the consensus value within a small num-
ber of steps, specifically within fourappend and threeLast
operations. Even when multiple clients participate simulta-
neously, if a leader emerges quickly then every client may
terminate after engaging in only a small number of protocol
rounds and no coin-flips. We now proceed to describe the
expected running time of our algorithm more generally.

Typically, one hopes that in the common case clients
fail only benignly and do not exhibit malicious behavior.
With the algorithm as described so far, we can prove that in
this case, a client will complete the protocol in an expected
O(c4n) operations on timed append-only arrays (even in the
face of up to the thresholdb of Byzantine server failures),
wherec � n is the actual number of clients that append val-
ues to their arrays before any correct process decides. The
strategy used for proving this result is to show that in only
c2 rounds can Coin() operations return different values to
different clients. Moreover, in each roundr in which the
Coin() operation returns the same value to all clients that
invoke it, there is a constant probability that the value re-
turned by the Coin() operation is the same as the first value
appended in roundr. When this happens, the algorithm will
quickly terminate. The result is an expectedO(c2) rounds in
which each client executesO(c2n) array operations, yield-
ing a total ofO(c4n) operations.

The story is different for the worst-case running time for
this algorithm in case of Byzantine client failures. In this
case, the algorithm no longer terminates with probability
one. The reason for this is twofold: First, there is noth-
ing to prevent faulty clients from invoking theip protocol
for any roundr far in advance, effectively rendering these
flips predictable to faulty clients. By carefully controlling
the scheduling of operations in the protocol, they can use
this advance knowledge ofip results to prolong the proto-
col indefinitely. Second, even ifip values were withheld
from clients for long enough, a faulty client might repeat-
edly use a differentview in its Coin() operation than correct
clients, thereby resulting in a different coin value than cor-
rect clients.

In order to prove termination in the general case, we
are thus forced to make some modifications to the proto-
col. First, to prevent prematurely revealingip values to
faulty clients, we stipulate the following:

Stipulation 7.1 A correct server does not respond to a
client invoking theip protocol for roundr unless that client
has executedtwo justifiedappend operations in roundr.

Second, we forceeach client to explicitly append the value
of view used in a Coin() operation, and the (verifiable) result
of theip operation, to detect a faulty client that attempts to
report a different result from its Coin() operation:

Stipulation 7.2 The Coin() operation returns, in addition
to the selected value, the result of theip operation and the
value ofview computed in the Coin() operation; the client
appends thisip value and theview in the sameappend
operation as the coin value (i.e., in its firstappend of the
next round).

Though seemingly minor additional stipulations, the first
of these substantially increases server involvement in the
protocol, in terms of the amount of protocol logic that must
be server-resident and the message traffic sent to servers.
This is due to the fact that each server is required to test
for justification ofappend operations (which we have not
required until now) prior to participating in aip protocol.
In order to make this test as efficient as possible for servers,
each client can first forward copies of all previouscommit

andvalue messages (i.e., setsCj;v;t in Section 4) to each
server that it contacts in theip protocol (see Section 6), so
that the server can update its local arrays and then restrict its
attention to its own local arrays to determine justifiability of
the client'sappend operations in that round.

With Stipulations 7.1 and 7.2 in place, we can prove the
following:

Theorem 7.1 Each correct client decides in expected
O(c4n) array operations.

We emphasize that in practice, however, it may be desirable
to omit Stipulations 7.1 and 7.2 and settle for a protocol
that terminates with probability one in the case of benign-
failures only. Though in theory the algorithm without these
stipulations could be extended arbitrarily by faulty clients,
in practice this would require substantial control over sys-
tem scheduling by faulty clients.

8. Conclusion

A consensus object in a Byzantine failure-prone environ-
ment is a powerful abstraction, allowing individual clients
to obtain a consensus value without waiting for other clients
to invoke the object. We described an implementation of
randomized consensus objects supported by a set of persis-
tent servers, that can survive arbitrary failures of up to a
threshold number of the servers and any number of clients
accessing them. Due to thequorum-based replication tech-
niques underpinning our implementation [13, 14], we ex-
pect that our protocol can scale to very large numbers of
servers and clients. Several of the enabling mechanisms we
have developed in our protocol are of general value in them-
selves: The timed append-only arrays can be used in other
protocols to support non-malleable communication among
clients when Byzantine failures are a concern; and the dis-
tributed coin-flipping technique of Section 6 can be useful
in other randomized protocols.

References

[1] J. Aspnes and M. Herlihy. Fast randomized consensus using shared
memory.Journal of algorithms, 11:441–461, 1990.

[2] H. Attiya, A. Bar-Noy and D. Dolev. Sharing memory robustly in
message-passingsystems.Journal of the ACM, 42(1):124–142, Jan-
uary 1995.

[3] J. K. Bennet, J. B. Carter and W. Zwaenepoel. Munin: Distributed
shared memory based on type-specific memory coherence. InSec-
ond ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pages 168–176, March 1990.

[4] B. Chor and C. Dwork. Randomization in Byzantine agreement.
In Advances in Computing Research, Randomness in Computation,
volume 5, JAI Press, edited by S. Micali, pages 443–497, 1989.

[5] Y. Desmedt and Y. Frankel. Shared generation of authenticators
and signatures. In J. Feigenbaum, editor,Advances in Cryptology—
CRYPTO '91 Proceedings(Lecture Notes in Computer Science
576), pages 457–469. Springer-Verlag, 1992.

[6] A. De Santis, Y. Desmedt, Y. Frankel and M. Yung. How to share
a function securely. InProceedings of the 26th ACM Symposium on
Theory of Computing, pages 522–533, May 1994.

[7] W. Diffie and M. E. Hellman. New directions in cryptography.IEEE
Transactions on Information TheoryIT-22(6):644–654, November
1976.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process.Journal of the ACM
32(2):374–382, April 1985.

[9] L. Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM21(7):558–565, July 1978.

[10] L. Lamport. On interprocess communication (part II: algorithms).
Distributed Computing1:86–101, 1986.

[11] L. Lamport, R. Shostak and M. Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems
4(3):382–401, July 1982.

[12] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems.ACM Transactions on Computer Systems, 7(4):321–359,
November 1989.

[13] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed
Computing11(4), to appear. Preliminary version appears inPro-
ceedings of the 29th ACM Symposium on Theory of Computing,
pages 569–578, May 1997.

[14] D. Malkhi, M. Reiter, and A. Wool. The load and availability of
Byzantine quorum systems. InProceedings of the 16th ACM Sym-
posium on Principles of Distributed Computing, pages 249–257,
August 1997.

[15] D. Malkhi and M. Reiter. Secure and scalable replication in Phalanx.
In Proceedingsof the 17th IEEE Symposium on Reliable Distributed
Systems, October 1998.

[16] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-
tal signatures and public-keycryptosystems.Communications of the
ACM21(2):120–126, February 1978.

[17] FIPS 180-1, Secure hash standard. Federal Information Pro-
cessing Standards Publication 180-1, U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, April 17,
1995.

