Concise Version Vectors in WinFS

Dahlia Malkhi! and Doug Terry?

! Microsoft Research Silicon Valley and
The Hebrew University of Jerusalem, Israel
2 Microsoft Research Silicon Valley

Abstract. Conflicts naturally arise in optimistically replicated systems.
The common way to detect update conflicts is via version vectors, whose
storage and communication overhead are number of replicas X number
of objects. These costs may be prohibitive for large systems.

This paper presents predecessor vectors with exceptions (PVEs), a
novel optimistic replication technique developed for Microsoft’s WinFS
system. The paper contains a systematic study of PVE’s performance
gains over traditional schemes. The results demonstrate a dramatic re-
duction of storage and communication overhead in normal scenarios,
during which communication disruptions are infrequent. Moreover, they
identify a cross-over threshold in communication failure-rate, beyond
which PVEs loses efficiency compared with traditional schemes.

1 Introduction

Consider an information system, such as an e-mail client, that is composed of
multiple data objects, holding folders, files and tags. Data may be replicated
in multiple sites. For example, a user’s mailbox may reside at the server, on
the user’s office and home workstations, and on a PDA. The system allows
concurrent, optimistic updates to its objects from distributed locations, without
communication or centralized control. So for example, the user might hop on the
plane with a copy of her mailbox on a laptop and edit various parts of it while
disconnected; she may introduce changes on a PDA, and so on. At some point,
when connecting between these components, she wishes to synchronize versions
across replicas, and be alerted to any conflicts generated.

This problem model arises naturally within the scope of Microsoft’s WinF'S
project, whose aim is to provide peer-to-peer weakly consistent replicated stor-
age facilities. The problem model is fundamental in distributed systems, and
numerous replication methods exist to tackle it. However, the applications that
are aimed for by the WinF'S team mandate taking scale more seriously than ever
before. In particular, e-mail repositories, log files, and databases can easily reach
millions of objects. Hence, communicating even a single bit per object (e.g., a
‘dirty’ bit) in order to be able synchronize replicas might simply be too costly.

In this paper, we present a precise description and correctness proof of
the replica reconciliation and conflict detection mechanism inside Microsoft’s
WinFS. We name the scheme predecessor vectors with exceptions (PVE). We

P. Fraigniaud (Ed.): DISC 2005, LNCS 3724, pp. 338-3531 2005.
© Springer-Verlag Berlin Heidelberg 2005

Concise Version Vectors in WinF'S 339

produce a systematic study of the performance gains of PVE, and provide a com-
parison with traditional optimistic replication scheme. The results demonstrate
a substantial reduction in storage and communication overhead associated with
replica synchronization, in most normal cases. In conditions that allow (most)
synchronizations to complete without communication breaks, a pair of replicas
needs only communicate a constant number of bits per replica in order to detect
discrepancies in replicas’ states. Moreover, they need to maintain only a sin-
gle counter per object in order to determine versions ordering and alert to any
conflict. Our study also demonstrates the “cut-off” point in the communication
fault-rate, beyond which the PVE technique becomes less attractive than the
alternatives.

In order to understand the efficiency leap offered by the PVE scheme, let
us review the most well known alternative. Version Vectors (VVs) [I] are tra-
ditionally used in optimistic replication systems in order to find which replica
has more updated object states, as well as to detect conflicting versions. Per
object version vectors were pioneered in Locus [I], and subsequently employed
in various optimistic replication systems, e.g., [2/413].

The version vector for a data object is an array of size R, where R is the
number of replicas in the system. Each replica has a pair (replica,counter)
in the vector, indicating the latest counter value introduced on the object by
the replica. For example, suppose that we have three replicas, A, B, and C.
An object is initialized with VV ((A4,0), (B,0),(C,0)). An update to the ob-
ject initiated at replica A increments A’s component, and so generates version
((A, 1), (B,0),(C,0)). Later, B may obtain the new version from A and store
it, and produce another update on the object. The newer object state receives
version ({4, 1), (B,1),(C,0)). And so on.

A version vector V' dominates another vector W if every component of V' is
no less than W; V' strictly dominates W, if it dominates W and one component
is greater. Due to optimism, there may be objects on different replicas whose
version vectors are incomparable by the domination relation; this corresponds
to conflicting versions, indicating that simultaneous updates were introduced to
the object at different replicas. For example, continuing the scenario above, sup-
pose that all replicas have version ({4, 1), (B, 1), (C, 0)) in store. Now proceed to
have diverging updates on the object simultaneously by A and C. These gener-
ate VVs ((A,2),(B,1),(C,0)) and ((A, 1), (B, 1),(C, 1)), respectively, which are
conflicting as neither one dominates the other.

Consider a system with IV objects replicated across R replicas. Further, con-
sider the synchronization between two replicas whose views of the object space
differs in ¢ objects. The VV scheme is designed for synchronizing replicas object
by object, and incurs the following costs.

1. Store a version-vector per object, incurring a storage overhead of 9] (N x R)
bits space;

! For simplicity of notation, the notation 6() indicates the same complexity order as
O(+) up to logarithmic factors of N and R, which may be required to code any single
value in our settings.

340 D. Malkhi and D. Terry

2. Communicate information that allows the two replicas to determine which
objects one should send the other, and to detect conflicts. A naive imple-
mentation sends all IV version vectors, incurring a communication overhead
of O(N x R). If the replicas store logs of recent updates, and maintain ad-
ditional information about the position known to other replicas in the log,
they may bring the cost down close to O(g X R), which is the lowest possible
communication overhead with the VV scheme.

These cost measures and their analysis are made more precise later in the
paper. Note that even for moderate numbers of replicas R, storing N x R values
is a substantial burden when N is large, and moreover, communicating between
O(gq X R) to O(N x R) overhead bits may be prohibitive.

In WinF'S, the goal is to quickly synchronize heavy-volume servers, each carry-
ing large magnitudes of objects. In situations where communication distuptions are
not the norm, the innovative PVE mechanism in WinF'S that reconciles replica dis-
crepancies brings down costs a considerable amount. It needs O(R) information bits
to determine replica’s differences, i.e., the equivalence of communicating one ver-
sion vector. In addition, per object meta-information storage and communication
is in most cases constant (one counter).[Table Tlin[Section 5lcontains a summary of
these complexities. In the remainder of this paper, we describe the foundations of
the PVE replication protocol, and compare is against VVs.

The contributions of this paper are as follows. First, we give a precise and de-
tailed formulation of the PVE replica reconciliation protocol employed in WinF'S.
We note that the full design and the architecture of the WinFS system is the
result of a large team effort, and is beyond the scope of this paper. Second, we
develop a performance model capturing the cost measures of interest to us, and
quantify the performance gains of the PVE scheme, as compared with known
methods. Third, we evaluate these measures via simulation under complex sys-
tem conditions with increasing communication failures rates. This evaluation
reveals a cut-off point that characterizes the benefit area of the PVE scheme
over traditional version vectors.

2 Problem Statement

In this section, we begin with the precise specification of our problem. Later
sections provide a rigorous treatment of the solution.

The system consists of a collection of data objects, potentially numerous.
Each object might be quite small, e.g., a mail entry or even a status word.
Objects are replicated on a set of hosts. Each host may locally introduce updates
to every object, without any concurrency control. These updates create a partial
ordering of object versions, where updates that sequentially follow one another
are causally related, but non-related updates exist and are conflicting.

Our focus is on distributed systems in which updates overwrite previous ver-
sions. The alternative would be database or journal systems, in which the history
of updates on an object is stored and applied at every replica. State-based storage

Concise Version Vectors in WinF'S 341

saves storage and computation, and is suitable for the kind of information systems
that WinF'S aims for, e.g., a user’s Outlook files, where updates may be numer-
ous. In state-based systems only the most recent version of any object needs to be
sent. Nevertheless, it is worth noting that the method presented in this paper can
work with (minor) appropriate modifications for log-based replication systems. For
brevity, we omit this from discussion in this paper.

The goal is to provide a lightweight replica-reconciliation and conflict de-
tection mechanism. The mechanism should provide two communicating replicas
with the means to detect precedence ordering on object versions that they hold,
and detect any conflicts in them. With this mechanism, they can bring each
other up-to-date or report conflicts.

More precisely, we now describe objects, versions, and causality. An object
is identified uniquely by its name. Objects are instantiated with versions, where
an object instance has the following fields:

name: the unique identifier.

version: a pair (replica id, counter).

predecessors: a set of preceding versions (including the current version).
data: application-specific opaque information.

Because versions uniquely determine objects’ instances, we simply refer to
any particular instance by its version. There may be multiple versions with the
same object name. We say that these are versions of the same object.

There is a partial, causal ordering among different versions of the same object.
When a replica A creates an instance of an object o with version v, the set W of
versions that are previously known by replica A on o causally precedes version
v. In notation, W < v. For every version w € W, we likewise say that w causally
precedes v; in notation, w < v. Causality is transitive.

Since the system permits concurrent updates, the causality relation is only a
partial order, i.e., multiple versions might follow any single version. When two
versions do not follow one another, they are conflicting. Le., if w Av A v A w,
then v and w are conflicting.

It is desirable to detect and resolve conflicts, either automatically (when ap-
plication specific conflict resolution code is available) or by alerting the user and
solving manually. In either case, a resolution of conflicting versions is a version
that causally follows both. For example, here is a conflict and its resolution:
Vo =V=<W; VAU, UAV; Vg <U=<W .

New versions override previous ones, so we are generally only interested in
the most recent version available; versions that causally precede it are obsolete
and carry no valuable information. This simple rule is complicated by the fact
that multiple conflicting versions may exist, and we are interested in all of them
until they can be resolved.

2.1 Performance Measures

This paper is concerned with mechanisms that facilitate synchronization of dif-
ferent replicas. The challenge is to bring the storage and communication costs

342 D. Malkhi and D. Terry

associated with replica reconciliation (significantly) down. More precisely, we
focus on two performance measures:

Storage is the total number of overhead bits stored in order to preserve version
ordering.

Communication is (i) the total number of bits communicated between two
replicas in order to determine which updates are missing by one that the other
has, and (ii) any overhead data that is transferred along with objects’ states in
order to determine precedence/conflicts.

3 Overview of the PVE Method

This section provides an informal overview of the PVE scheme. Later sections
provide a more formal description and a proof of correctness.

The PVE scheme works as follows. An object version is a pair (replica,
counter). Instead of using separate counters for distinct objects, the scheme
uses one per-replica counter to enumerate the versions that the replica gener-
ates on all objects (the counter is across all objects). For example, suppose that
replica A first introduces an update to object o1, and second to os. The ver-
sions corresponding to o1 and to o will be (A, 1), (A, 2), respectively. Note that
versions are not full vectors, as in the traditional VV scheme described in the
Introduction.

Each object has, in addition to its version, a predecessor set that captures the
versions that causally precede the current one. Predecessor sets are captured in
PVE using version vectors, though we will show momentarily that in most cases,
PVE can replace these vectors with a null pointer. In order to distinguish these
vectors from the traditional version vectors, we call them predecessor vectors.
A predecessor vector (PV) contains one version, the latest, per replica. When
a replica A generates a new object version, the PV associated with the new
version contains the latest versions known by A on the object from each other
replica. For example, suppose we have three replicas, A, B, and C. A new object
starts with a zeroed predecessor vector ((A,0), (B,0),(C,0)). Consider the two
versions generated by replica A above on 07 and oq, (A4,1) and (A, 2), respec-
tively. When A creates these versions, no other versions are known on either oy
or o2, hence the PV of (A4,1) is ((4,1),(B,0),(C,0)), and the PV of (4,2) is
((A,2),(B,0),(C,0)). A (causally) subsequent update to o1 by replica B creates
version (B, 1), with predecessors ((A, 1), (B, 1),(C,0)). This PV represents the
latest versions known by B on object o1.

The formal definition capturing the per-replica scheme with predecessor vec-
tors scheme are given below.

Definition 1 (Per-Replica Counter).
Let X be a replica. The versions generated by replica X on objects are the
ordered sequence {(X,i)}i=1.2,....

Concise Version Vectors in WinF'S 343

Definition 2 (Predecessor Vectors).

Let X1, ..., XR be the set of replicas. A predecessors vector (PV) is an R-array
of tuples of the form ((X1,41),...,(XR,%R))-

A predecessors wvector ({X1,41),...,(Xgr,ir)) dominates another wvector
(X1,71)y -y (XR,JR)) if i > ji for k = 1..R, and it strictly dominates if
ig > j¢ for some 1 < { < R.

By a natural overload of notation, we say that a predecessor vector ({(X1,11),
.oy (XR,igr)) dominates a version (X, jk) if ix > ji; strict domination follows
accordingly with strong inequality.

The reader should first note that despite the aggregation of multiple-object
versions using one counter, the predecessor version vectors can express prece-
dence relations between versions of the same object. For example, in the scenario
above, version (A, 1) precedes (B, 1), and is indeed dominated by the PV associ-
ated with version (B, 1). Moreover, PVs do not create false conflicts. The reason
is that incomparable predecessor vectors conflict only if they belong to the same
object. So for example, suppose that continuing the scenario above, replica A in-
troduces version (A, 3) to object 01 with predecessors ({4, 3), (B, 1), (C,0)); and
simultaneously, replica C' introduces version (C, 1) on o2, with the corresponding
PV ((4,2),(B,0),(C,1)). These versions would be conflicting had they belonged
to the same object, but are fine since they are never compared against each other.

Hence, comparing different versions for the same object is now possible as
in the traditional use of version vectors. Namely, the same domination rela-
tion among predecessor vectors and versions, though these may contain replica-
counters pertaining to different objects, can determine precedence and conflicts
of updates to the same object.

Reducing the Overhead. So far we have not introduced any space savings over
traditional VVs, though. The surprising benefit of aggregate PVs is as follows.
Let X.knowledge denote the component-wise maximum of the PVs of all the
versions held by a replica X. The performance savings stems from the following
fact: In order to represent ordering relations of all the versions X stores for all
objects, it suffices for replica X to store only X.knowledge. Knowledge aggre-
gates the predecessor vectors of all objects, and is used instead of per-object PV.
More specifically, knowledge replaces PVs as follows.

— No PV is stored per object at all. The only vector stored by a replica is its
aggregate knowledge vector.

— In order for A to determine which versions in its store are more up-to-
date than B’s store, B simply needs to send B.knowledge to A. Using the
difference between A.knowledge and B.knowledge, A can determine which
versions it should send B.

— Then, having determined the g relevant newer versions, A sends these ver-
sions with (only) a single version counter each, plus to send (once) A’s
knowledge vector.

The reader should be concerned at this point that information is lost concern-
ing the ability to tell version precedence. We now demonstrate why this is not

344 D. Malkhi and D. Terry

the case. When two replicas, A and B, wish to compare their latest versions of
the same object o, say (r,n,) and (s, ns) respectively, they simply compare these
against A.knowledge, B.knowledge. If A.knowledge dominates (s, ns), then the
version currently held by A for object o, namely (r, n,.), strictly succeeds (s, ns).
And vice versa. If none of these knowledge vectors dominates the other version,
then these are conflicting versions.

Going back to the scenario built above, replica A has in store the following;:
or.version = (A,3); og.version = (A,2); knowledge = ((A,3),(B,1),(C,0)).
Replica C' stores the following: oj.version = (B,1); og.wersion = (C,1);
knowledge = ((A,2),(B,1),(C,1)). When comparing their versions for object
01, A and C will find that A’s version is more recent, and when comparing their
versions of object oz, they will find C’s version to be the recent one. B

The result is that storage overhead in WinFS is O(N + R), instead of O(N x
R). More dramatically, the communication overhead associated with synchro-
nization is reduced. The communication overhead of sending knowledge is 5(R),
and the total communication overhead associated with synchronizing replicas is
O(g+ R).

Dealing with Disrupted Synchronization. Synchronization among two replicas
may fail to complete due to network disruption. One way of coping with this is
to abort incomplete synchronization procedures; then no further complication
to the above scheme is needed.

However, in reality, due to large volumes that may need to be synchronized,
aborting a partially-completed synchronization may not be desirable (and in fact,
may create increasingly larger and larger synchronization demands, that might
become less and less likely to complete). The aggregate knowledge method above
introduces a new source of difficulty due to incomplete synchronizations. Let us
demonstrate this problem. When replica A receives an object’s new version from
another replica B, that object does not carry a specific PV. Suppose that before
synchronizing with B, the highest version A stores from B on any object is
(B, 10). If B sends (B, 14), then clearly versions (B, 11), (B, 12), and (B, 13) are
missing in A’s knowledge, hence there are “holes”.

It is tempting to try to solve this by a policy that mandates sending all
versions from one replica in an order that respects their generation order. In
the above scenario, send (B, 11) before (B, 14), unless that version has been
obsoleted by another version. Then, when (B, 14) is received, A would know
that it must already reflect (B, 11), (B,12), and (B, 13).

Unfortunately, this strategy is impossible to enforce, as illustrated in the
following scenario. Object o1 receives an update from replica A, with version
(A, 1), and PV ((4,1),(B,0), (C,0)). Meanwhile, object oq is updated by B, its
version is (B, 1), with PV ({A,0), (B, 1), (C,0)). Replica A and B synchronize
and exchange their latest updates. Subsequently, object o1 is updated at replica
B with version (B,2) and PV ({A,1),(B,2),{(C,0)); and object o2 is updated
at replica A with version (4,2) and PV ((4,2),(B,1),(C,0)). The orderings

between all versions is as follows:

Concise Version Vectors in WinF'S 345

[<B’ 2>§ PV = (<A’ 1>7 <Bv 2>’ (C, O>)]

o1:[(A,1); PV = ((4,
A [<A72>;PV: (<A,2>,<B,1>,<C,O>)]

=
02:[(B,1); PV = ({4, =<
Then Replica B synchronizes with replica A, sending it all of its recent updates.
Replica A now stores: o1.version = (B, 2); os.version = (A,2); knowledge =
((4,2), (B.2), (C,0)).

Now suppose that replica C, which has been detached for a while, comes
back and synchronizes with replica A. During this synchronization, only the
most recent versions of objects 01 and oy are sent to replica C. In this scenario,
there is simply no way to prevent holes: Replica C' may first obtain o;’s recent
version, i.e., (B,2), and then have its communication cut. Then version (B, 1)
(which happens to belong to 02) is missing. A similar situation occurs if replica
C obtains 09’s recent version first and is then cut.

It is worth noting that although seemingly we don’t care about the missing,
obsoleted versions, we cannot ignore them. If the subsequent versions are lost
from the system for some reason, inconsistency may result. For example, in the
first case above, the missing oo version (B, 1) is subsumed by a later version
(A, 2). However, if replica C simply includes (B, 2) in its knowledge vector, and
replica A crashes such that (A, 2) is forever lost from the system, C' might never
obtain the latest state of oy from replica B.

The price paid in the PVE scheme for its substantial storage and commu-
nication reduction is the need to maintain information about such exceptions.
In the above scenario, replica C will need to store exception information as fol-
lows. Fiist, C.knowledge will contain ({A4,0),(B,2),(C,0)) with an exception
(eB,1).

Definition 3 (PVs with Exceptions).

A predecessors vector with exceptions (PVE) is an R-array of tuples of the
Jorm ((Xy,i1)(eXy, 15)(eXn, 5,), o (XR,ir)(eXR, 150 (e X1, 45,)

A wversion (X, jx) is dominated by a predecessors vector X with exceptions
as above if i, > jr, and jr is not among the exceptions in the k’th position in
X.

A predecessors vector with exceptions X dominates another vector Y if the
respective PVs without the exceptions dominate, and no exception included X is
dominated by Y .

Second, we require that a replica maintain explicit PV for every new version
it obtains via a partial synchronization. These explicit PVs may be omitted only
if the replica’s knowledge dominates them. Continuing the scenario above, we
demonstrate a subtle chain of events which necessitates this additional overhead.

2 An alternative form of exception is to store ((4,0),(B,0),(C,0)) with a ‘positive
exception’ (eB, 2). The two alternatives result in different storage load under different
scenarios, positive exceptions being preferable under long synchronization gaps. For
simplicity, we use negative exceptions in the description here, although the method
employed in WinF'S uses positive exceptions.

346 D. Malkhi and D. Terry

Consider the information stored at replica C after partial synchronization:
or.version = (B, 2); og.version = L; knowledge = ({A,0),(B,2)(eB,1),(C,0)).
Suppose that A synchronizes with C' and sends it update (A, 1) on o;. This
update clearly does not follow (B,2) (the current version of o; held by C),
but according to C’s knowledge, neither is it succeeded by it — a conflict! The
problem, of course, is that C’s knowledge no longer dominates version (A4, 1).

Only at the end of the synchronization procedure, the knowledge of the send-
ing replica is merged with the knowledge of the receiving replica. At that point,
knowledge at the receiving replica will clearly dominate all of the versions it
received during synchronization, and their PV may be omitted. But if synchro-
nization is cut in the middle, some of these PVs must be kept, until such time
when the replica’s knowledge again dominates them.

In our performance analysis and comparison with other methods, we take
into account this cost and measure its effect. Note that, it is incurred only
due to communication disruptions that prevent synchronization procedures from
completing. Our simulations vary the number of such disruptions from small to
aggressively high.

4 Causality-Based Replica Reconciliation

In this section, we begin to provide the formal treatment of the PVE replica
reconciliation mechanism. Our approach builds the description in two steps.
First, we give a generic set-oriented method for replica reconciliation, and define
the properties it requires. Second, in the next section, we instantiate the method
with the PVE concise predecessor vectors scheme.

The key enabler of replica synchronization is a mechanism for represent-
ing sets of versions, through which precedence ordering can be captured. To
this end, replicas store the following information concerning causality. First,
replica 7 maintains information about the entire set of versions it knows of, rep-
resented in r.knowledge. Second, each version v stored at replica r contains in
v.predecessors a representation of the entire set of causally preceding versions.
More specifically, we require the maintenance of a set r.knowledge per replica r,
and v.predecessors per version v, as follows.

Definition 4 (The Knowledge Invariant). For every replica r, and version
v, we require r to maintain a set r.knowledge, such that if v € r.knowledge then
replica v stores version v or a version w such that v < w.

Definition 5 (The Predecessors Invariant). For every object instancesv and
w, we require r to maintain a set w.predecessors such that v € w.predecessors if
and only if v < w.

Given the above two requirements, it should be possible to determine if a
version is included in a replica’s storage; and if one version precedes another or
they conflict.

Concise Version Vectors in WinF'S 347

4.1 A Synchronization Framework

We now give a two-way asymmetric, conflict detection framework that uses
knowledge and predecessors. The protocol is composed of a requestor that con-
tacts a server, and obtains all the versions in the server’s knowledge. These
versions are integrated into the requestor’s storage, and raise conflict alarms
where needed.

The synchronization protocol is a one-way protocol between a requesting
host and a serving host. It makes use of the conflict causality representation as
follows:

1. Requestor r sends server s its knowledge set r.knowledge.
2. Server s responds with the following:

(a) For every object o it stores, for which o.version ¢ r.knowledge, it sends o

3. For every version o received by from s, requestor r does the following:
(a) For every object w in store, such that w.name == o.name:
if o € w.predecessors then ignore o and stop;
else if w.version € o.predecessors then delete w;
else alert conflict.
(b) Insert o.version into r.knowledge.
(c) Integrate o.predecessors into r.knowledge.
(d) store o

Fig. 1. A generic framework for using causality information

However, for our purposes, representing the full knowledge and predecessors
sets is too costly. The challenge is to represent causality in a space-efficient
manner, suitable for very large object sets, and moderate-size replica sets, while
maintaining the invariants. The detailed solution follows in the next section.

4.2 Concise Version Vectors

The key to our novel conflict-detection technique is to transform the
predecessors sets into different sets that can be represented more efficiently.
We first require the following technical definition:

Definition 6 (Extrinsic). Let o be some object, o.predecessors its predeces-
sor set. Let S be a set of versions. We denote by S |o.name the reduction of
S to wversions pertaining to object o.name only. S is called extrinsic to o if
S |o.name== o.predecessors.

The surprising storage saving is derived in PVE from the following realiza-
tion. For any object o, we can use an extrinsic set to o in place of predecessors
throughout the protocol. In particular, when a replica’s knowledge set is extrin-
sic to a predecessors set, it may be used in its place; the main storage savings is

348 D. Malkhi and D. Terry

derived from using an empty set to denote (by convention) the replica’s knowl-
edge set, and avoid repeated storage of it. The following rule is the root of the
PVE storage and communication savings:

Property 1. At any point in the protocol, any predecessors set may be replaced
with an extrinsic set. By convention, an empty predecessors set indicates the
replica’s knowledge set.

We are now ready to introduce the PVE novel conflict detection scheme,
which considerably reduces the size of representations of predecessor versions in
normal cases.

Versions and Predecessor Vectors. The scheme uses the per-replica counter
defined in [Definition 1] that enumerates updates generated by the replica on all
objects. Hence, a replica r maintains a local counter c. When replica r generates
a version on an object o, it increments the local counter and creates version
(r,c) on object o. Predecessors are represented using the PVEs as defined in

Knowledge. A replica r maintains in r.knowledge a PVE representing all
the versions it knows of. Inserting a new version (s,ns) into r.knowledge is
done by updating the highest version seen by s to (s,ns), and possibly insert-
ing exceptions if there are holes between ng and the previous highest version
from s.

Object Predecessors. As already mentioned, an empty (L) predecessors set
is used whenever r.knowledge is extrinsic to an object’s predecessors. In all
other cases, predecessor contains a PVE, describing the set of causally preceding
versions on the object.

Generating a New Version. When a replica r generates a new update on an
object o, the new version (r,c¢) is inserted into r.knowledge right away. Then,
if o.predecessor is L, nothing needs to be done to it. Implicitly, this means
that the versions dominated by r.knowledge causally precede the new version. If
o.predecessors is not empty, then the new version is inserted to o.predecessors
without exceptions. Implicitly this means that the set of versions that were
dominated by the previous o.predecessors causally precede the new update.
Merging Knowledge. During synchronization, the knowledge vector of a
sender s is merged into the knowledge vector of the receiver r. The goal of
the merging is to produce a vector that represents a union of all the versions in-
cluded in r.knowledge and s.knowledge, and replace r.knowledge with it. For ex-
ample, merging s.knowledge = ((4,3), (B,5){(eB,4), (C,6)) into r.knowledge =
((A, 7){eA,6), (B,3){(eB,2),(C,1)) yields ((4,7)(eA,6),(B,5){eB,4),(C,6)).
Synchronization. Space saving using empty predecessors requires caution in
maintaining the extrinsic nature of predecessor sets throughout the synchroniza-
tion protocol.

First, suppose that a requestor r receives from a server s a version v with
an extrinsic v.predecessors set. It is incorrect to merge v.predecessors into the
r.knowledge set right away, since v.predecessors may contain versions of objects
different from v that r does not have. Hence, only v itself can be inserted into
r.knowledge.

Concise Version Vectors in WinF'S 349

Second, consider the state of r.knowledge at the end of its synchronization
with s. Every version v sent by s has been inserted into r.knowledge. However,
there may be some versions, e.g., w < v, which r.knowledge does not contain.
s does not explicitly send w, because it is included in v.predecessors. But since
predecessor sets are not merged into r.knowledge, it may be left not containing
w. To address this, at the end of an uninterrupted synchronization with s, the
requestor r merges s.knowledge into r.knowledge.

Third, should synchronization ever be disrupted in the middle, a requestor r
may be left with r.knowledge lacking some versions. This happens if a version v
was incorporated into r.knowledge, but some preceding version w < v has not
been merged in.

As a consequence, in a future synchronization request, say with s’, v may
(inefficiently) receive w from s'. Hence, r checks if it can discard w by test-
ing whether w is contained in v.predecessors (and if yes, r also inserts w into
r.knowledge for efficiency). below describes the full PVE synchroniza-
tion protocol.

1. Requestor r sends server s its knowledge set r.knowledge.
2. Server s responds with the following:
(a) It sends s.knowledge.
(b) For every object o it stores, for which o.version & r.knowledge, it sends o. If
s.knowledge is not extrinsic to o.predecessors, s sends o.predecessors (other-
wise, leave o.predecessors empty).

3. For every version o received from s, requestor r does the following;:

(a) For every object w in store, such that w.name == o.name:
if o.version € w.predecessors or w.predecessors == 1 and o.version €
r.knowledge then ignore o and stop;
else if w.version € o.predecessors or o.predecessors == 1 and w.version €

s.knowledge then delete w;
else alert conflict.

(b) store o

(c) If o.predecessors == 1, then unless r.knowledge is extrinsic to
s.knowledge set o.predecessors = s.knowledge.

(d) For every object w in store, such that w.name == o.name (these
must be conflicting versions), if w.predecessors = L then set

w.predecessors = r.knowledge.
(e) Insert o.version into r.knowledge.
4. Merge s.knowledge into r.knowledge.
5. (Lazily) go through versions v such that v.predecessors # L, and if
r.knowledge is extrinsic to v.predecessors then set v.predecessors = L.

Fig. 2. Using extrinsic predecessors; modifications from the generic framework indi-
cated in boldface

350 D. Malkhi and D. Terry

4.3 Properties

The following properties are easily derived from the two invariants given in
[Definition 4] and [Definition 5l In the full paper, we provide proof that the pro-
tocol above maintains these invariants.

Safety: Every conflicting version received by a requestor is detected.

Non-triviality: Only true conflicts are alerted.

Liveness: at the end of a complete execution of a synchronization procedure, for
all objects the requestor r stores versions that are identical, or that causally
follow, the versions stored by server s .

5 Performance

Storage overhead associated with precedence and conflict detection comprises
of two components. The per replica knowledge vector contains aggregate infor-
mation about all known versions at the replica. In typical, faultless scenarios,
the PVE scheme requires O(R) space per replica for the knowledge representa-
tion. By comparison, the VV scheme has no aggregate information on a replica’s
knowledge.

Additional storage overhead stems from precedence vectors. In our scheme,
in faultless scenarios there is one version counter per object, incurring a space
of O(N). By comparison, in faultless scenarios, the VV scheme keeps O(R x N)
storage, i.e., one version vector per object.

The fault-free (lower-bound) storage overhead for PVE and VV are summa-
rized in [Table 11

When failures occur, the overhead of VV remains unchanged, but the PVE
scheme may gradually suffer increasing storage overheads. There are two sources
of additional complexity. The first is the need to keep exceptions in the knowledge,
the second is the explicit version vectors (and their corresponding exceptions) kept
for versions which the replica’s knowledge does not dominate. In theory, neither of
these components has any strict upper bound. These formal upper bounds are also
summarize in[Table I]below. Below we provide simulation results that demonstrate
storage growth in the PVE scheme relative to failure rates.

The communication overhead associated with synchronization also has two
parts. First, a sender and a receiver need to determine which objects have ver-
sions yet unknown to the receiver. In the PVE scheme, this is done by conveying
the receiver’s knowledge vector to the sender. The faultless overhead here is
O(R); the upper bound is again theoretically unbounded.

Denote from now on the number of object versions that the sender determines
it has to send to the receiver by ¢. The second component of the communication
overhead is the extra precedence information associated with these ¢ objects. In
faultless runs of the PVE scheme, this information consists of one counter (the
version counter) per object. Hence, the overhead is 6(q) In case of faults, as
before the knowledge vector might contain an unbounded number of exceptions,

Concise Version Vectors in WinF'S 351

100 object system

100
head ' ' PVE sltorage overhead —&—
overhea PVE comm overhead ——
80 VV —— -
GOL— i ;

40 .
20 .
<¢ 1 1
0 20 40 60 80 100
percent of disrupted synchronizations
1000 object system
100 T T T
head PVE storage overhead ——
overhea PVE comm overhead ——
80 VV —=— -
60 | .
\||
40 | .
20 |+ .
O 1 1
0 20 40 60 80 100

percent of disrupted synchronizations

Fig. 3. Per-object storage and communication overheads with varying communication
failure frequency, with N = 100 objects (top) N = 1000 objects (bottom)

and additionally, some objects may have explicit version vectors (and their ex-
ceptions) associated with them. Hence, there is no formal upper bound on the
synchronization overhead. Here again, our simulation studies relate this com-
plexity with the fault rate.

As for the VV scheme, the only way to convey knowledge of the latest versions
held by a replica is by explicitly listing all of them, which requires O(N x R) bits.
Therefore, in realistic deployments of VV, the server may keep a log of version
vectors of all the objects that received updates since the last synchronization
with the requestor, and sends only the VVs associated with these objects. The
complexity will be between O(¢ x R) and O(N X R).

In face of communication faults, replicas using the PVE method might accumu-
late over time both knowledge exceptions, and versions that require explicit pre-
decessors. There is no simple formula that describes how frequently are exceptions
accrued, as this depends on a variety of parameters and exact causal ordering.

352 D. Malkhi and D. Terry

In order to evaluate the effect of communication disruptions on storage in
our scheme, we conducted several simple simulations. We ran R = 50 replicas,
generating version updates to objects at random. The number of objects varied
between N = 100 and N = 1000. Every 100 total updates, a synchronization
round was carried out in a round-robin manner: Replica 1 served updates to 2,
replica 2 served 3, and so on, up to replica R sending updates back to 1. This was
repeated 100 times. A failure-probability variable p fail controlled the chances of
a communication disruption within every pairwise synchronization. We measured
the resulting average communication and storage overhead. These are depicted in
for three cases, 100, 1000 and 10000 objects. We normalize the overhead
to per-object overhead. For reference, the per object storage overhead in standard
VVs is exactly R = 50. The best achievable communication overhead with VVs
is also R = 50, and is depicted for reference.

The figure clearly indicates a tradeoff in the PVE scheme. When communica-
tion disruptions are reasonably low, PVE storage and communication overhead is
substantially reduced compared with the VV scheme, even for a relatively small
number of objects. As failure rate increases, the number of exceptions in aggre-
gate vector rises, and the total storage used for knowledge and for predecessor sets
increases. The point at which the per-object amortized overhead passes that of a
single VV depends on the number of objects, and for quite moderate size systems
(1K objects) the cut-off point is beyond 90 percent communication disruption rate.

Table 1. Lower and Upper Bounds Comparison of PVE with the version-vector scheme

|Version Vectors| PVE |
storage 1.b.| O(N x R) |O(N + R)
storage u.b| O(N x R) |unbounded
comm Lb. O(g x R) O(qg+ R)
comm u.b.| O(N x R) |unbounded

Acknowledgements

The protocol described in this paper was designed by the the Microsoft WinF'S
product team, including Doug Terry. We especially acknowledge Irena Hudis
and Lev Novik for pushing the idea of concise version vectors. Harry Li, Yuan
Yu, and Leslie Lamport helped with the formal specification of the replication
protocol and the proof of its correctness.

References

1. D. S. Parker (Jr.), G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,
J. M. Chow, S. Kiser D. Edwards, and C. Kline. Detection of mutual inconsistency
in distributed systems. IEEE Transactions on Software Engineering, 9(3):240-247,
May 1983.

Concise Version Vectors in WinF'S 353

2. T. W. Page (Jr.), R. G.. Guy, J. S. Heidemann, D. H. Ratner, P. L. Reiher, A. Goel,
G. H. Kuenning, and G. Popek. Perspectives on optimistically replicated peer-to-
peer filing. Software — Practice and Exzperience, 11(1), December 1997.

3. R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using
lazy replication. ACM Transactions on Computer Systems, 10(4):360-391, 1992.

4. D. H. Ratner. Roam: A Scalable Replication System for Mobile and Distributed
Computing. PhD thesis, 1998. UCLA Technical report UCLA-CSD-970044.

	Introduction
	Problem Statement
	Performance Measures

	Overview of the PVE Method
	Causality-Based Replica Reconciliation
	A Synchronization Framework
	Concise Version Vectors
	Properties

	Performance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

