
Spanner’s Concurrency Control

Dahlia Malkhi Jean-Philippe Martin
Microsoft Research, Silicon Valley
{dalia,jpmartin}@microsoft.com

Abstract

The Spanner project reports that one can build practical large-scale systems that combine
strong semantics with geo-distribution. In this review manuscript, we provide insight on how
Spanner’s concurrency control provides both read-only transactions which avoid locking data,
and strong consistency.

1 Data Model

Spanner [2] is a transactional data service. It stores a collection of objects. Objects are partitioned
among a set of servers. Each server is itself replicated using Paxos-driven state-machine replication,
with a designated group leader at any moment in time. For most of the discussion, we gloss over
replication internals, and treat each group of replicas as an undivided server. We denote objects
with capital letters, e.g., A, B, C.

2 Read/Write Transaction Atomicity

R/W transactions are managed using strict concurrency control [1], which means that every data
item accessed by a transaction is first locked, and no two concurrent transactions may hold a lock
to the same data item if one of the locks is for write. All data objects modified by a transaction
become visible only upon transaction commit time, making transactions e↵ectively atomic. Spanner
adopts a usual trick to enhance concurrency (“optimistic execution until commit”) as follows. Each
transactions defers its write-locks until commit time, at which time it performs two-phase commit
protocol [1]: all bu↵ered writes by the transaction attempt to acquire locks; data objects are
actually updated only if the transaction commits, and then updates become externally visible. To
illustrate this, say we have two objects, A and B, initially set to zero, and two example transactions
as shown in Figure 1.

In the example, locking prevents EX-T1 incrementing A to 1 while simultaneously EX-T2 sets
B to 1. Clearly, unconstrained lock acquisition may result in a deadlock.

ACM SIGACT News 73 September 2013 Vol. 44, No. 3



EX-T1: Read B and, if zero, increment A
EX-T2: Read A, and set B to A+ 1

Figure 1: Running example with two transactions.

wound-wait is a method for performing distributed concurrency control in a deadlock-free man-
ner. When a transaction requests to prepare an operation (read/write) which conflicts with another
read/write operation in an on-going transaction, we select to either wait or wound based on trans-
action unique ids, where lower-id takes precedence and wounds, while higher-id waits:

wait: delay until the conflicting transaction terminates (via either abort or commit)

wound: broadcast a request for the conflicting transaction to restart and wait until it actually
rewinds (or terminates). In some implementations, the wounded transaction may greedily continue
executing, unless it incurs a waiting state, in which case it rewinds

Figure 2: Wound-Wait.

Spanner employs a two-phase locking protocol with wound-wait [4] lock acquisition strategy to
prevent deadlocks. EX-T1 may arrive after EX-T2 acquired a read-lock on A and a write-lock on
B; it causes EX-T2 to rewind, and sets A to 1; then EX-T2 re-executes and sets B to 2.

So far, there are no versions, timestamps, or any of the complicated mechanisms

which make up most of the Spanner work. We now add fast read-only transactions, which
add a whole new dimension to the system.

3 Read-Only Transactions

Most data accesses are for reading purposes only, and moreover, may entail long-lived computations
such as data analysis. We often want to execute transactions which do not modify data di↵erently
than R/W transactions, and allow them to proceed without locking out R/W transactions over the
same data. Spanner names such read-only transactions lock-free, to indicate that the transaction
itself does not lock any data items, and thus, never prevents any read-write transaction from making
progress.2

Unfortunately, even if R/W transactions execute atomically, reading multiple objects without
using locks could end up with inconsistent snapshots. To illustrate this, consider again the example
transactions EX-T1, EX-T2 above. We add one more transaction, EX-T3, which reads A and B. An
unconstrained execution might result in EX-T3 seeing A=0 (before any commits) and B=2 (after
both EX-T1, EX-T2 commit). We want a read-only transaction to view a state of the data store
which could result from an atomic execution of the R/W transactions, and the only known way

to do this without locking for reads is to introduce data versioning, and potentially

retain multiple versions of the same object until they can be evicted.
Data versioning with a global source of ordering works as follows. We assign each version a

timestamp according to a global transaction commit order and label all writes within a transaction
with this timestamp. A client can read a consistent snapshot by requesting to read object versions
not exceeding some designated timestamp.

2
We note that the term might be confused with lock-freedom, which is a progress condition that stipulates execution

progress under certain conditions. Therefore, we refer to these simply as read-only transactions.

ACM SIGACT News 74 September 2013 Vol. 44, No. 3



In the above example, say that EX-T1 commits first, and we assign it timestamp 1; and EX-T2
commits next and obtains timestamp 2. A client performing EX-T3 could request to read snapshot
0, before any commits; snapshot 1, after EX-T1 commits but before EX-T2; or snapshot 2, after
both commits. Importantly, data versioning also introduces potential delays. For example, in the
above scenario, reading snapshot 2 must wait until EX-T2 completes. So although read-only

transaction do not lock any data themselves, they might block when waiting for R/W

transactions to complete.

4 Choosing Timestamps

We now describe how Spanner assigns timestamps to R/W transactions, as well as how to choose
timestamps for read-only transactions, so as to (i) avoid central control, and (ii) minimize read
blocking. The following two informal rules give insight on the selection of timestamps for transac-
tions in Spanner.

Rule 1: The timestamp for T is a real time after all the reads have returned and before the
transaction releases any locks.

Rule 2: Each participant contributes a lower-bound on the transaction timestamp T: The lower
bound at each participant is greater than any timestamp it has written in the past locally. Jointly,
these provide the following properties:

• from Rule 1, it follows that if transaction T starts after transaction T ends, then T must have
a higher timestamp than T;

• from Rule 2, it follows that if transaction T reads something that transaction T wrote, then
T must have a higher timestamp than T (note that this can happen even if T starts before
T ends), and

• from Rule 2, it also follow that if transaction T overwrites something that transaction T
previously wrote, then T must have a higher timestamp than T.

Additionally, these rules mean that a server never has to block before replying when asked for
data with a timestamp that is lower than the bound that the server proposed for any pending
transaction (i.e. one that hasnt yet committed).

It is not hard now to construct a distributed protocol which upholds both rules. In fact, it is
natural to incorporate this within a two-phase commit protocol at the end of transaction execution,
as detailed in Figure 1 below: The first phase collects lower-bounds and determines a timestamp
for the transaction, and the commit phase instructs participants to execute pending writes and
make them visible, using the corresponding timestamp as their version number.

In order to account for clock skews, Spanner makes use of an approximate clock service called
TrueTime, which provides a reading of an interval surrounding real time (akin to Marzullos time
server [3]). The Spanner coordinator reads TrueTime at the beginning of the two-phase commit,
and delays su�ciently long before commit to guarantee that the timestamp it chooses for the
transaction has passed in real time.

ACM SIGACT News 75 September 2013 Vol. 44, No. 3



Phase 1 (Prepare)

Non-coordinator: When asked to lock data for writes, each non-coordinator participant picks a
Prepare time ts

local

, which serves as lower-bound on the final timestamp the coordinator will assign
for this transaction. ts

local

satisfies (a) it is larger than any timestamp associated with its local
data, and (b) it is larger than any lower-bound it sent in a previous Prepare.

Coordinator: The coordinators lower bound, in addition to being monotonically increasing with
respect to its past writes, is constrained to be strictly higher than current real time. That is, its
lower bound is greater than the time at which all of the transactions reads have completed. (As a
practical note, the first action on the Spanner coordinator is the local reading of the clock, so as to
minimize the forced wait in Phase 2, due to any clock skew. And the Spanner coordinator defers
taking its own write-locks until after it collects responses from all participants, so as to maximize
concurrency.)

Each participant (including coordinator) records the Prepare time so as not to serve read requests
at a time higher than it until the transaction completes.

Phase 2 (Commit)

The transaction timestamp is computed as the maximum among the lower-bounds which were
collected from participants. The coordinator forces a wait until real clock time has passed the
transaction timestamp, before commencing to commit all writes and release locks.

Upon Commit, each participant removes the Prepare time associated with the transaction, and
removes the restriction on reads which was associated with it.

Figure 3: 2-Phase Timestamp Selection.

5 Choosing Timestamps for Read-Only Transactions

In order for a read inside a read-only transactions to uphold linearizability, it must return the latest
value written in a transaction that ends before the read starts. Asking for the upper-bound on
TrueTimes current clock reading su�ces, because any transaction that ended before that point has
a lower timestamp.

However, using this timestamp may cause the transaction to wait. So in the special case of a
read-only query addressed to a single server, Spanner instead sends a special read request that tells
the server to use the latest timestamp is has written locally to any data. If there is no conflicting
transaction in progress, then that read can be answered immediately.

Spanner also supports read-only transactions from arbitrary snapshot times, which are properly
named snapshot-reads.

6 Concluding Remarks

As mentioned up front, we have omitted many details and distilled only the transaction concurrency
control. In particular, transaction and timestamp management is intertwined in Spanner with the
two-phase commit protocol. Therefore, a complete description of the protocol would include details

ACM SIGACT News 76 September 2013 Vol. 44, No. 3



pertaining to logging for recovery and Paxos replication management within each participant.
Additionally, we did not specify how locks are reclaimed in case of failures. Spanner clients send
keepalive message to a transaction leader, and all transaction participants are themselves replicated
for fault tolerance.

We have encountered a subtlety in the Spanner paper which was glossed over above. The
description of timestamp management in the paper requires that the coordinator contribute a lower
bound which is larger than any “timestamp the leader has assigned3 to previous transactions”. It
may not be completely unambiguous what the term “assigned” refers to, because only a transaction
coordinator selects/assigns timestamp. In the description above, we disambiguate that the lower
bounds should be greater than the time associated with any data “written” in the past.

An example where this matters may be constructed as follows: First the coordinator reads its
local clock to set its own lower bound ts

local

, then it receive a commit message as non-coordinator
for some other transaction T whose timestamp is higher than ts

local

, then it commits T with
timestamp ts

local

.
Finally, stepping back from details, we can summarize Spanner’s concurrency control method as

follows. Spanner uses straightforward two-phase commit in order to order read-write transactions.
The particular variant of two-phase commit implemented in Spanner (i) delays write-lock acquisition
until the end of a transaction, and (ii) uses Wound-Wait to resolve deadlocks.

Most of the complication in the concurrency-control protocols is due to read-only transactions.
Supporting these transactions entails (i) maintaining multiple versions of each data item, (ii) choos-
ing timestamps for read-write transactions, and (iii) serving “read at timestamp” requests.

Acknowledgements: We are grateful to Spanner’s Wilson Hsieh, and to Idit Keidar, for
helpful comments on earlier versions of this paper.

References

[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

[2] James C. Corbett and other. Spanner: Google’s globally-distributed database. In Proceedings
of the 10th USENIX conference on Operating Systems Design and Implementation, OSDI’12,
pages 251–264, 2012.

[3] Keith Marzullo. Maintaining the time in a distributed system. PhD thesis, Stanford University,
Department of Electrical Engineering, February 1984.

[4] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. System level concurrency
control for distributed database systems. ACM Trans. Database Syst., 3(2):178–198, June 1978.

3
Boldface added for emphasis

ACM SIGACT News 77 September 2013 Vol. 44, No. 3


