
On Spreading Recommendations via Social Gossip

Yaacov Fernandess
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Israel

fery@cs.huji.ac.il

Dahlia Malkhi
Microsoft Research

Silicon Valley, California
U.S.A

dalia@microsoft.com

ABSTRACT
This paper introduces and analyzes a variant of distributed
gossip which is motivated by the sharing of recommenda-
tions in a social network. The social settings bear two im-
plications on gossip. First, rumors fade after a few hops,
and so does our gossip mechanism. Second, users require a
rumor to be substantiated by multiple, independent sources
in order to adopt it. Consequently, in our social gossip a
message is adopted only when it is received over a threshold
of independent paths. Social gossip is a new, highly rele-
vant and practically motivated variant of distributed gossip,
whose analysis contributes to the fundamental theory of dis-
tributed algorithms.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer Com-
munication Networks— Network Protocols

General Terms
Algorithms, Theory

Keywords
randomized algorithms, message dissemination, gossip algo-
rithms, epidemic algorithms

1. INTRODUCTION
Whether you are searching the web, browsing for books,

or looking for recommendations on child-care, your friends’
preferences will likely get you better search results. This vi-
sion underlies the growing success of numerous services that
are based on social networks such as MySpace, FaceBook,
Linkedin, and Yahoo’s 360.

Our work takes a formal look at the problem of reliably
sharing information in a social network. It arises within the
context of the Nocturnal project [1]. The project harnesses
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the power of social networking to automatically share infor-
mation with a user’s friends, family and business contacts
to deliver collaborative recommendations.

Nocturnal provides automated information sharing among
users in an instant messaging (IM) network. An agent run-
ning on a user’s workstation automatically exchanges the
user’s stored recommendations with immediate IM contacts.
The information is relayed to the contacts’ contacts and their
contacts, and so on. No central server is involved. The infor-
mation arriving at any user is stored locally, along with tags
indicating the simple path it came from. That is, the simple
path contains the users through which the recommendation
has traveled. The recommendation-sharing infrastructure is
generic and is useful to various network applications.

Currently, Nocturnal shares recommendations about web-
pages in order to provide better web search results. A user’s
browser enhanced with the tool uses the information gath-
ered from the user’s social network to further filter and re-
sort search engine results. This brings recommended URLs
to higher ranking, whereas pages reported as low quality are
demoted. In addition, the tool enhances the user browsing
experience: The tool’s graphical user interface renders on-
line feedback, listing page quality and the social path by
which the information was passed through the network.

Privacy via gossip.
The core communication mechanism in the Nocturnal net-

work is gossip. Users’ recommendations are neither moni-
tored by, nor stored at, a centralized location. Utilizing
the existing end-to-end communication IM infrastructure,
our approach guarantees that the user information is shared
and stored only within his community. Randomized gossip
techniques for information dissemination are key in numer-
ous distributed systems. A randomized gossip algorithm
operates in (semi-) synchronous rounds, each node selects a
partner uniformly at random from all its direct neighbors,
and exchanges information with it. In information dissem-
ination gossip algorithms each node starts with a message,
and the nodes must spread the messages throughout the net-
work using local communication so that every node eventu-
ally has every message. The goal is to minimize the amount
of rounds required for all nodes to eventually has every mes-
sage. However, our social gossip differs from standard gossip
in two substantial ways.

First, each user in the Nocturnal network sets a hop-count
bound that limits the distance from which information is
deemed relevant. That is, the user’s agent only stores rec-
ommendations, later to be verified, that traversed through



paths shorter than a designated hop-count bound, and dis-
cards the information otherwise.

Second, the user’s agent accepts the information as trust-
worthy only if it arrives from sufficiently many independent
sources, rather than just one. Having such adoption thresh-
old is common in social network theory (see, e.g., [20]). In
order to implement the adoption threshold, the gossip pro-
tocol in Nocturnal relays not only the gossiped information
itself, but also meta-information about the path through
which it traversed. Each user then accepts a gossip mes-
sage only if it has been received over f + 1 disjoint gossip
paths, for some parameter threshold f .

The adoption criterion in Nocturnal is based on path–
verification, a gossip method that was independently intro-
duced in [27] and in [24] for different settings. Implementing
such path verification gossip has challenged researchers in a
number of previous works, but no proven, practical solution
has yet emerged. Exponential protocols appear in [27, 24,
25], requiring a node to incur an exponential computational
step in order to find a satisfying vertex–disjoint path. The
exponential computation proves impractical, even for a mod-
erate network size. A proposal for a practical heuristic was
given in [27], but thus far, has been validated by simulation
only.

Our contribution is a practical path verification protocol
with computation and storage complexity, which is polyno-
mial in n. In short, it works in two logical phases. The first
‘Aggregate’ phase takes O(log(n)) rounds. The length of the

paths is bounded by O( (log(n log(n))
log log(n)

). In the second ‘Collect’

phase, nodes exchange simple, non-intersecting paths with
one another using a greedy linear-time path selection rule.
The main body of this paper is devoted to showing that the
greedy selection rule suffices for nodes to collect the required
f+1 disjoint paths efficiently, and that the total completion
time of the gossip is asymptotically optimal.

Analysis.
More concretely, we first look at the effect of bounded hop

limit on (standard) information dissemination gossip algo-
rithm. Let A(`) be a gossip algorithm that spreads messages
from origin(s) to within distance `. Since standard gossip
(without a hop bound) reaches all nodes within O(log(n))
protocol rounds, having ` = O(log(n)) essentially poses no
hop count constraint, and it suffices to achieve optimal dis-
semination time. The natural question to ask is what hap-
pens with smaller `’s. Denote by xd(r) the number of nodes
that have received m over a shortest path of length d before
the beginning of round r. At the beginning of round r + 1,
xd(r+1) will count those nodes that remain in possession of
shortest path of length d from the previous round, as well as
new nodes that have obtained m through nodes at distance
d− 1. Clearly then, xd(r+ 1) ≤ xd(r) +xd−1(r). From this,

it easily follows that
∑`

i=1 xi(r) ≤ 2r` (see Lemma 4.1).
One immediate result of this upper bound is that for A(`)
to complete in logarithmic time, log`(n) needs to be linear
in n, which implies ` ≥ log(n)/ log log(n). More generally,
the following theorem states the number of gossip rounds

needed for termination for any ` ≤ 2(log(n log(n))
log log(n)

:

Theorem 1.1. The number of rounds for termination of

A(`), where ` ≤ 2(log(n log(n))
log log(n)

, is O((n log(n))(2/`)) in expec-
tation.

In particular, we obtain that for ` = 2(log(n log(n))
log log(n)

, the

gossip time is asymptotically optimal in expectancy.

We further incorporate in the analysis our path verifica-
tion adoption rule. That is, we analyze the time for nodes
to obtain information on m over f + 1 independent paths.
Let B(`, f) be our path verification gossip protocol, where
` is the path length bound, and by f , the adoption thresh-
old. Our main complexity result is captured in the following
theorem:

Theorem 1.2. The number of rounds for termination of

B(`, f) in a network where f(1+`) < n
2

and ` = Θ( log(n)
log log(n)

)

is O(logn+ f) with high probability.

We note that this time complexity is asymptotically op-
timal: The dissemination of a single message using gossip
requires at least Ω(logn) rounds. On the other hand, in or-
der for a node to receive the message through f + 1 disjoint
paths, it requires at least f + 1 rounds. Hence the running
time is lower bounded by max{logn, f + 1} = Ω(logn+ f).

Summary.
This paper introduces a new social gossip protocol and

its analysis. Our gossip model has a natural, appealing in-
tuition. As a recommendation travels from one user to the
next, its relevance decreases. In other words, in terms of
trust, the trust put in a recommendation is highest when
it comes from a direct contact, and gradually diminishes as
it is conveyed from one user to the next. Therefore, when
a certain hop-count limit is reached, the trust goes to zero
and the message dissemination stops.

The adoption criterion protects the network from spam
recommendations: It might be possible for intruders to pen-
etrate the network at a single place, or even manage to hook
up with other nodes. However, given the security threshold
f , a message needs to be carried over f + 1 non-overlapping
simple paths to be validated. Thus, recommendations from
bad sources are presumed impossible to reinforce.

Moreover, good recommendations automatically reinforce
themselves. Each node becomes an active origin itself once
the adoption criterion has been met. This, in turn, enhances
the recommendation’s influence on the network.

Our path-verification protocol and its analysis contribute
to the theory of gossip protocols and demonstrate that our
social gossip mechanism has optimal convergence time in
terms of protocol rounds, while incurring polynomial com-
munication and linear computational complexity.

Organization.
The rest of the paper is organized as follows: Section 2

provides formal definitions. Section 3 describes our gossip
based path–verification protocol followed by a performance
analysis on fully connected communication networks in Sec-
tion 4, and on social networks in Section 5. Last, in Section
6 we review related work.

2. SYSTEM MODEL AND PRELIMINARIES
In our analysis of the suggested gossip mechanism we view

a social network as a set V of n nodes that interact with
random uniformly chosen contacts. In Section 5, we expand
our discussion to partial graphs in which users are limited
to interact with pre-designated sets of neighbors.



We envision a system in which different recommendations
are introduced at different times and locations continuously,
and focus our discussion on a single recommendation, de-
noted throughout the paper by m. Spammers are treated as
corrupt nodes, and we assume that the set F of spammers
of any specific message is bounded by size f . Initially, we
assume that a random set of non–corrupt nodes originate
the message m and thus are considered active relative to m.
We denote by I ⊆ V \ F the initial subset of active nodes
that originate the message, and stipulate that |I| > f .

The active nodes are unknown a priori, nor are they known
to the nodes themselves at the outset of the protocol, or even
during the protocol’s execution. The remaining non–corrupt
nodes are considered passive. Passive nodes store and relay
messages. Each time the message is relayed, its relevance
diminishes. Consequently, we set a bound ` on the number
of hops that a gossip message may traverse from any origin.

The goal of the algorithm is to turn passive nodes into
active ones. A passive node becomes active for message m
once it received m through f + 1 vertex–disjoint paths of
length shorter than `. In order to implement our adoption
criterion, a path-verification mechanism needs to be incor-
porated. A passive node forwards the message even before
adopting it. Our gossip protocol communicates not only the
messages, but also the paths by which the message has tra-
versed through the network. Each node needs to collect sets
of disjoint paths of bounded lengths by which the message
traversed through the network. When the set contains f +1
disjoint paths, the message is adopted by the node.

Transmission Model. We model the communication as a
uniform random epidemic process, similar to Demers et al.
[7]. These protocols operate in rounds, denoted r = 1, 2, . . ..
In each round r, each node chooses uniformly at random an-
other node to be a communication partner, and exchanges
information with it. With reference to the flow of informa-
tion, [7] distinguishes between push and pull transmission
models. Assume node v calls node u.

• The message is pushed if v transfers u a message.

• The message is pulled if u transfers v a message.

In the protocols suggested by [27], nodes pull messages,
rather than push messages to the system, in order to limit
the ability of corrupt nodes to inject false information into
the system. Our work adopts this approach by choosing
the pull transmission model for the protocols discussed in
this paper. Last, we assume that the communication chan-
nels among the nodes are reliable and authenticated, in the
sense that a non-corrupt node u receives a message over a
communication channel from another non-corrupt node v if
and only if v sent that message to u. This is a realistic con-
straint in a large and wide-spread social network such as our
example of an instant-messaging network.

3. PROTOCOL
In this section, we present a practical, bounded-hop path–

verification protocol based on a gossip pull transmission
model, whose time complexity is asymptotically optimal.

Our protocol accumulates at each node v a set of simple
paths. Let Pv(r) denote the set of simple paths through
which a passive node v receives the message at the beginning
of round r. The protocol also grows at each node a separate

set of disjoint simple paths P v(r). Initially, both sets are
empty Pv(0) = P v(0) = ∅ for every passive node.

Aggregate Phase. In the first O(logn) rounds, each pas-
sive node u chooses a communication partner v uniformly at
random and sends a pull request. If v obtained m through
path(s) of length smaller than `, v sends m to u along with
the set of paths it stores for m, Pv(r). When node u re-
ceives a response, it verifies that Pv(r) includes paths no
longer than ` − 1 and that |Pv(r)| ≤ 2r. If so, let P+

v (r)
be the result of appending v to each path in set Pv(r), u
sets Pu(r + 1) = P+

v (r) ∪ Pu(r). Otherwise u discards the
response.

Collect Phase. In each of the following rounds, each pas-
sive node u chooses a communication partner v uniformly
at random and sends a pull request. Along with each pull
request, u includes the set Pu(r). When v receives the re-
quest it acts as follows: If a simple path P exists in Pv(r) of
length smaller than ` such that P does not contain any node
that already appears in Pu(r), v sends P to u. Otherwise,
v sends the shortest path from the set P v(r). When node
u receives the response from v denoted by P , u first verifies
that its length is smaller than `. Next, u appends v to the
path P and then verifies that P is indeed vertex–disjoint to
Pu(r). If so, u updates Pu(r+1) = Pu(r)∪P . Otherwise, u
replaces P with an existing path Q if and only if P ’s length
is shorter than Q i.e. Pu(r + 1) = (Pu(r) \Q) ∪ P .

Termination. A passive node v that obtained m becomes
active for a message m only if it received m through f + 1
vertex–disjoint paths, namely |P v(r)| > f .

4. ANALYSIS
As has been observed in previous works that employ path–

verification [27, 24], a message m that is introduced by f or
fewer nodes will not be adopted by any non-corrupt node.
The reason for this is that a node that pulls m from a sender
appends the sender’s identity to the path(s). Hence, corrupt
nodes cannot remove their own identities from the gossip
paths of a message, but only the identity of others. Conse-
quently, if there are f or less origins for the message, there
may not be f + 1 disjoint paths for m at any point. Conse-
quently, any rumor injected by the corrupt nodes in F will
not be adopted by any non-corrupt node.

The main focus of our analysis in the rest of the paper is
to determine the number of rounds needed to spread a good
recommendation m, which is originated at I, to all non-
corrupt nodes. Additionally, we comment on the storage
and computation load on passive nodes.

Generally, the number of rounds needed to turn all pas-
sive nodes active depends on the network topology G. For
the moment, we consider a fully–connected communication
network (i.e. a complete graph). We extend our analysis to
a social network topology in Section5.

Aggregate Phase. During the aggregate phase, the dissem-
ination of the same message m from different origins occurs
independently of one another, since the entire paths infor-
mation is accumulated and forwarded in every gossip inter-
action. Therefore, we can track the dissemination of m from
each individual origin separately. We do this by analyzing a



randomized gossip protocol, denoted A(`), of a single mes-
sage. In order to avoid confusion, we denote the individual
copy of m that A(`) spreads by m̂. The only distinction
of A(`) of m̂ from standard information spread randomized
gossip is that the message m̂ propagates from its origins up
to a bounded hop-distance `.

More specifically, in each round, each node pulls infor-
mation from a communication partner chosen uniformly at
random from its neighbors along with paths by which the
message traversed through the network. Upon request, a
node forwards the message m̂ only if it received m̂ through
a path of length smaller than `, otherwise, it ignores the
request.

Let X(r) denote the set of nodes that obtained the mes-
sage m̂ before the beginning of round r = 0, 1, 2, . . .. Ini-
tially, X(0) = {v}, where v is the origin node. Let ε denote
the desired bounded error probability of A(`) (e.g. w.h.p.
means that ε ≤ n−c for an arbitrary constant c > 0 ), hence,
the time complexity of A(`) is as follows:

TA(`)(ε) = inf
r=0,1,2,...

{r : Pr(X(r) 6= V ) ≤ ε}

Let Xd(r) ⊆ X(r) denote the subset of nodes that ob-
tained m̂ through a shortest path of length 0 ≤ d ≤ `, and
denote by xd(r) = |Xd(r)| its size. The algorithm termi-
nates when all the nodes received the message m̂. Our first
lemma shows that the hop bound ` substantially impacts
the speed of message spreading.

Lemma 4.1. In any execution of algorithm A(`), and for
all rounds r, |X(r)| ≤ 2r`.

Proof. At the beginning of round r+1, xd(r+1) counts
those nodes that remain in possession of shortest path of
length d from the previous round, as well as new nodes that
have obtained m̂ through nodes at distance d − 1. Clearly
then, xd(r + 1) ≤ xd(r) + xd−1(r). From this, xd(r + 1) ≤∑

i=0..r xd−1(i) ≤ (r + 1)xd−1(r). Since x0(·) = 1, obtain

inductively xd(r + 1) ≤ (r + 1)d. It follows that |X(r)| =∑
d=0..` xd(r) ≤

∑
d=0..` r

d ≤ 2r` as required.

In particular, logarithmic termination time requires that
for round r = c log(n), where c is a constant, m̂ has reached
all nodes at round r. This implies c log`(n) = n, which
requires ` ≥ log(n)/ log log(n).

An upper bound on the number of rounds required for
termination with any choice of ` = O(log(n)/ log log(n)) is
given in the following theorem.

Theorem 1.1. The number of rounds for termination of

A(`), where ` ≤ 2(log(n log(n))
log log(n)

, is O((n log(n))(2/`)) in expec-
tation.

Proof. For every node v ∈ I and for every d = 0, 1, . . . , `
and round r let Bd(r) denote V \ ∪d

i=0Xi(r), and by bd(r)

the ratio |Bd(r)|
n

. In particular, for every round r = 0, 1, . . .

b0(r) = 1 − 1
n

, hence, the algorithm A(`) terminates once

b`(r) ≤ 1
n

. Assume that r ≥ `, otherwise, for every round in
which ` > r satisfies b`(r) = b`−1(r).

E[bd(r + 1)|x0(r), x1(r), . . . , x`(r)] =

n−
∑d

i=0 xi(r)

n
·
n−

∑d−1
i=0 xi(r)

n
=

bd(r) · bd−1(r) =

Πr
i=d−1bd−1(i) =

Πr
id−1=d−1Π

id−1−1

id−2=d−2 · · ·Π
i2−1
i1=1(1− 1

n
)i1 =

(1− 1

n
)
∑r

id−1=d−1
∑id−1−1

id−2=d−2···
∑i2−1

i1=1 i1
=

e
− 1

n

∑r
id−1=d−1

∑id−1−1
id−2=d−2···

∑i2−1
i1=1 i1 ≤

e−
r

d
2

n ∀r = ω(d)

For every d = 0, 1, 2, . . . and for every round r ≥ d satisfies
E[bd+1(r)] ≤ E[bd(r)]. Setting ` = r = O(log(n)) essentially
poses no hop count constraint, which is equivalent to a pull
based information spread algorithm, thus e−r ≤ E[bd(r)] ≤

e−
r

d
2

n Applying the above bound, we obtain that when ` ≤
2(log(n log(n))

log log(n)
and round r = (n log(n))(2/`) is reached, the

expected number of uninfected nodes drops below 1 and the
protocol terminates.

Collect Phase. The key ingredient to our analysis of the
collection phase is captured in the following intuitive lemma.
It tracks the progress of the gossip algorithm A(`) within two
separate sets of nodes, ‘red’ and ‘blue’, denoted by R and
V \R respectively. The colors are unknown a priori, nor are
they known to the nodes themselves during the protocol’s
execution. Let C(`,R) denote an execution of the bounded
hop gossip algorithm A(`), during which any attempted in-
teraction between the nodes in V \ R and in R is silently
dropped. That is, A(`) diffuses a message initiated at a blue
node only through ‘blue’ nodes to all ‘blue’ nodes. Let us

denote by q the ratio |R|
n

. The lemma shows that there is

constant slow down factor as long as q < 1
2
.

Lemma 4.2. The number of rounds for termination of

C(`,R), where ` = Θ( log(n)
log log(n)

) and q < 1
2

, is O(log(n))

with high probability.

Proof. Let X̂d(r) ⊆ V \ R denote the subset of blue
nodes that obtained m̂ through a shortest path of length 0 ≤
d ≤ `, and denote by x̂d(r) = |X̂d(r)| its size. For every d =

0, 1, 2, . . . , ` and round r let B̂d(r) = V \ (R
⋃
∪d

i=0X̂i(r)),

and the ratio b̂d(r) by |B̂d(r)|
n−|R| . Hence, the execution C(`,R)

terminates once b̂`(r) ≤ 1
n−|R| .

E[b̂d(r + 1)|b̂d(r), b̂d−1(r)] = b̂d(r)(q + (1− q)b̂d−1(r))

Given b̂i(r), i = 0, 1, . . . , `, the expected reduction in size

for b̂d(r + ∆) is at least by factor

ρ(∆, b̂d−1(r)) = [q + (1− q)b̂d−1(r)]∆

By studying the function ρ(∆, (1 − ε)), when ε < 1
2

and

likewise, q < 1
2
, it is easy to see that for all ∆ ≥ 3, ρ(∆, (1−



ε)) < (1− ε) Therefore, for all rounds r s.t. b̂`−1(r) > 1
2
, we

obtain the following recursion formula:

E[b̂d(r + 3)|b̂d(r), b̂d−1(r)] ≤ b̂d(r) · b̂d−1(r)

Applying a Chernoff bound yields

n · b̂d(r + 3) ≤ (1 +
1

log(n)
)(n · b̂d(r))b̂d−1(r)

w.h.p., provided b̂`−1(r) > 1
2
. The recursion formula is sim-

ilar to theorem1.1 with 3-round “steps” instead of single
round step. The analysis in theorem1.1 solves the recur-
sion. In the final phase, where b̂`−1(r) < 1

2
, the expected

reduction in size for b̂`(r) is bounded as follows.

E[b̂`(r + 1)|b̂`(r)] ≤
3

4
b̂`(r)

Thus, within additional O(log 4
3
(n)) rounds the execution

terminates w.h.p.

As before, let B(`, f) be our path verification gossip pro-
tocol, where ` is the path length bound, and by f , the adop-
tion threshold. Our main complexity result is captured in
the following theorem:

Theorem 1.2. The number of rounds for termination of

B(`, f) in a network where f(1+`) < n
2

and ` = Θ( log(n)
log log(n)

)

is O(logn+ f) with high probability.

Proof. Consider a passive node u after Θ(log(n)) rounds.
Suppose that u obtained the message m through a set of
vertex–disjoint paths, Pu(r). We show that any node v /∈
(Pu(r)∪F ) obtained m through a path P such that (Pu(r)∪
F )∩P = ∅ w.h.p. Consider the nodes in the set (Pu(r)∪F )
‘red’ nodes, and note that |(Pu(r) ∪ F )| ≤ f(` + 1). That
is, the number of ‘blue’ nodes is at least half of the network,
namely f(1 + `) < n

2
. For each origin ‘blue’ node w ∈ I

of the message m, we may apply Theorem 1.1 and conclude
that v has obtained a path P from w excluding any ‘red’
nodes within O(log(n)) rounds w.h.p. Accordingly, within
additional O(f+log(n)) rounds, node u collects f+1 vertex–
disjoint paths for m w.h.p. and becomes an active node for
m.

Storage Complexity. Next, we address the storage over-
head incurred by each of the passive nodes in the system.
Each passive node aggregates path information for a message
m during the first Θ(logn) rounds, where maximum-path-

allowed is at most O( log(n)
log log(n)

). Moreover, a passive node

stores at most 2r paths during round r. Consequently, the
number of paths stored by each passive node is polynomial
in n.

Computational Complexity. In previous work [27, 24, 25]
each node had a significant computational step in order to
find a satisfying vertex–disjoint path set among the paths
held by a passive node. As shown in [27], this problem is
NP-complete. Fortunately, using randomization, our pro-
tocol’s computational complexity is polynomial in n. More
specifically, in each round r = Θ(logn), each passive node
u pulls information from a communication partner v at ran-
dom. Along with each pull, u includes the set Pu(r). When

v receives the request it needs to look for a path P ∈ Pv(r)
such that Pu(r) ∩ P = ∅. Obviously, such a search is linear
in the number of nodes in Pv(r), which is polynomial in n.

For completeness, we show that the protocol terminates
with optimal asymptotic running time for the case where
f = O(n) (i.e. since |I| > f requires that f < n

2
) w.h.p.

Claim 4.3. The protocol terminates within O(n) rounds,
where f = O(n) ( i.e. f < n

2
) w.h.p.

Proof. In this special case we consider a path–verification
where ` = 1. Hence, since each active node, v ∈ I, keeps
sending the message for n rounds the probability that a pas-
sive node obtained the message originated at any of the |I|
originators is exactly 1 −

(
1− 1

n

)Ω(n) ≥ Ω(1 − 1
e
). Hence-

forth, within additional O(f) rounds all the passive nodes
become active w.h.p. with minimal message payload.

5. SOCIAL NETWORKS
A real social network differs from the setting of the analy-

sis above in two important ways. First, nodes communicate
directly only with their social partners, and not with a part-
ner selected uniformly at random, as in randomized gossip.
Second, the acceptance criterion employed by users’ agents
may be more complicated than our fixed, global f thresh-
old. In this section, we refer to a reduction from the analysis
above to a more realistic setting.

We address the acceptance criteria first. Information cas-
cades in social settings have been studied extensively in so-
ciology. Information cascades are phenomena in which in-
dividuals are influenced by others to adopt a new action or
idea. In information cascade the goal is usually to deter-
mine which initial set will influence the network the most.
This is of interest to marketing, epidemiology, and computer
networking. For example, the general threshold model used
in sociology and economics, whose generalization was in-
troduced in [20], can be used for quantifying the “cumu-
lative influence” of a node set S over a node v. In the
model, each node v has a monotonous activation function
fv : 2V 7→ [0, 1], and a threshold θv from the interval (0, 1].
A node v becomes active at the beginning of round r + 1
if fv(S) ≥ θv, where S is the set of nodes active at the
beginning of round r.

In our approach, fv is mapped to the following criterion.
First, we assign a step-function W : V ∗ 7→ [0, 1] that gives
relevance value to gossip paths. A path P has relevance 1
if its length is up to our hop-count limit `, and 0 otherwise.
Second, we evaluate the function fv at S as follows. A node
v becomes active at round r + 1 if fv(S) ≥ 1, where S ⊇ I
is the set of nodes active at round r and v has obtained the
message from the nodes in S via a set of f +1 disjoint paths
whose relevance is 1. It would be interesting to study a more
general application of the threshold model. In particular, the
relevance value is application specific data that indicates the
importance of the data from the local user’s perspective and
may change each time the data is shared. For example, as a
recommendation propagates away from its creator, the data
relevance value may decrease. These extensions are left for
future studies.

Second, we address the issue of connectivity. Formally,
we investigate the time complexity of an information spread
gossip algorithm A in which a node v initiates a communi-
cation with one of its immediate neighbors u : v 6= u with
probability Pvu. With probability Pvv, it does not contact



another node. The n × n matrix P = [Puv] characterizes
the information spread gossip algorithm A; each matrix P
gives rise to a different algorithm AP . We assume that P is
stochastic, and that Pvu = 0 if (v, u) /∈ E, as nonadjacent
nodes cannot communicate with each other.

For a lack of a better model, we assume that a social
network is a small world topology [36, 21]. In [13] Flax-
man studies the expansion properties of perturbed random
graphs and conjectures that small world topologies tend to
be fast–mixing time. More formally, the mixing time T of a
graph G = (V,E) of n nodes quantifies how fast the ending
point of a random walk approaches the stationary distribu-
tion of the graph G. If T = O(log(n)), the graph is called
fast–mixing. Furthermore, Boyd et al. show in [5] that the
time complexity of an information spread gossip algorithm
in an arbitrary graph is closely related to the mixing time of
the random walk defined by the stochastic matrix that char-
acterizes the algorithm. This connection was later confirmed
by [28] Let Tmix(P ) be the mixing time of a simple random
walk defined by the stochastic matrix P , which characterizes
a gossip algorithm denoted by AP . The termination time of
the algorithm AP is bounded by O(log(n) + Tmix(P )).

Our analysis of the protocol presented in Section3 derives
the time complexity from the diffusion time of an informa-
tion spread gossip protocol. As before, the protocol activates
only passive nodes that received the message through f + 1
disjoint paths. As a result, we require that the network be
at least 2f + 1-connected, since there are at most f corrupt
nodes we require that the induced graph on the non-corrupt
nodes G[V \F ] be f + 1-connected. Furthermore, by setting

` = Θ( log(n)
log log(n)

), the time complexity of the protocol run-

ning over a small world network topology is O(logn + f).
This is true since the protocol’s time complexity was de-
rived from an information spread gossip algorithm A(`)P ,
which, as shown above, exhibits an asymptotically optimal
time complexity O(logn).

6. RELATED WORK
Gossip-style techniques are found in numerous robust dis-

tributed systems for information dissemination, including
Usenet news [22], the Grapevine distributed system [4], Ad
Hoc routing [17], distributed failure detectors [32], the As-
trolabe network management system [31], lightweight broad-
cast [9], membership maintenance [15], the CYCLON system
[33], GosSkip [16], collaborative content distribution [12],
and others. The performance of randomized gossip has been
addressed in several seminal papers, including[7, 19].

Our protocol borrows the path–verification technique from
the realm of Byzantine gossip. The problem of secure in-
formation dissemination in a fully Byzantine environment
without the use of conditional cryptography (Cryptographic
schemes, for which we do not have a mathematical proof
that they are totaly secure) was introduced in [23] and fur-
ther explored in [25, 24, 27]. The works closest in spirit to
ours in the use of epidemic-style propagation are [25, 24].
By bounding the size of paths to O( log n

log log n
) we are able to

completely circumvent the lower bound of [23] and obtain
asymptotically optimal dissemination time, albeit at the cost
of increased storage size. With reference to computational
complexity, in previous work [25, 24, 27], each node had a
significant computational step in order to find a satisfying
vertex–disjoint path set among the paths held by a pas-

sive node. As shown in [27], this problem is NP-complete.
Our work adds on to previous studies with the introduction
of a new gossip-based algorithm for path–verification that
spreads a message among non–corrupt nodes in O(logn+f)
rounds while incurring polynomial computational complex-
ity.

On a somewhat higher level, the vision underlying so-
cial gossip employs the concepts of trust and reputation,
in that it leverages on existing trust relationships for high
credential recommendations. Trust and reputation systems
initially attracted attention as traditional quality assurance
mechanisms were not as applicable for fostering coopera-
tion in online trading communities such as www.ebay.com,
www.amazone.com. Online reputation values are computed
by systems that aggregate feedback provided by online com-
munity members. Most existing examples of reputation sys-
tems are centralized in nature. However, in many cases
[10, 6, 11, 2, 18, 29, 30] it is desirable to perform calcu-
lations in a distributed manner, especially in the presence of
some potentially misbehaving system elements that cannot
be trusted to perform computations as expected.

The scale and decentralization envisioned in peer-to-peer
setting call into question the credibility of nodes, and raise a
concern that these schemes could be misused to spread cor-
rupt information. For example, the Sybil attack is an attack
in which a single peer controls multiple identities to other
legitimate peers in the networks, which threatens decentral-
ized distributed systems that have no central, trusted au-
thority to vouch for a peer-to-peer correspondence between
users and identities. By controlling a large fraction of the
nodes in the system, the malicious user is able to ŞoutvoteŤ
the honest users in such collaborative tasks as Byzantine
failure defenses. The problem of Sybil attack was initiated
in [8] and further explored in [3, 14]. The works closest in
spirit to ours with regards to social network are SybilGuard
[37] and LOCKSS [26]. These protocols are based on the
Şsocial networkŤ connecting user identities, where an edge
between two identities indicates a human-established trust
relationship. Malicious users can create many identities but
few trust relationships. Thus, there is a disproportionately-
small ŞcutŤ in the graph between the Sybil nodes and the
honest nodes, which obviously bounds the number of vertex-
disjoint paths. In essence, the trust relation among social
network users helps achieve much stronger properties com-
pared to networks with no trust relation between their users.

Recent studies indicate that many peer-to-peer file-sharing
activities involve corrupt and polluted files. Credence [35,
34] addresses content pollution by providing methods to
evaluate file authenticity. In order to validate a file, a client
issues a vote query to collect votes on the file; peers respond
with matching cryptographically signed votes they possess,
if any. Next, votes are collected and authenticated, where
the client uses statistical correlation to weight the relevance
of each vote it obtained. In order to compute the statistical
correlations with its peers, each client utilizes either shared
voting history or correlation values (i.e. transitive correla-
tion) or both. Conceptually, each client keeps track of both
signed votes and correlations it has encountered using two
separate databases.

Compared with our approach, Credence protocol is also
based on gossip communication mechanism, where network
nodes store and relay recommendations/votes regardless of
their content. However, in Credence, recommendations are



flooded through the entire network, whereas in our approach
recommendations traverse only through a limited-hop bound
from their sources. By employing our prudent reinforcement
mechanism, we in fact significantly reduce the impact of ma-
licious nodes on the network traffic. Our protocol’s local ap-
proach allows for an efficient information storage each node
stores message’s paths of bounded length. Finally, while
Credence makes use of central certificate authority, our rein-
forcement mechanism does not require any conditional cryp-
tography and as such is entirely decentralized.
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